The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BAN(1638hit)

301-320hit(1638hit)

  • A Practical Finite-Time Convergent Observer against Input Disturbance and Measurement Noise

    In Hyuk KIM  Young Ik SON  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:9
      Page(s):
    1973-1976

    A simple robust finite-time convergent observer is presented in the presence of unknown input disturbance and measurement noise. In order to achieve the robust estimation and ensure the finite-time convergence, the proposed observer is constructed by using a multiple integral observer scheme in a hybrid system framework. Comparative computer simulations and laboratory experiments have been performed to test the effectiveness of the proposed observer.

  • Joint Processing of Analog Fixed Beamforming and CSI-Based Precoding for Super High Bit Rate Massive MIMO Transmission Using Higher Frequency Bands

    Tatsunori OBARA  Satoshi SUYAMA  Jiyun SHEN  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1474-1481

    In order to tackle the rapidly increasing traffic, the 5th generation (5G) mobile communication system will introduce small cells using higher frequency bands with wider bandwidth to achieve super high bit rate transmission of several tens of Gbps. Massive multiple input multiple output (MIMO) beamforming (BF) is promising as one of the technologies that can compensate for larger path-loss in the higher frequency bands. Joint analog fixed BF and digital precoding have been proposed to reduce the cost of a Massive MIMO transceiver. However, the conventional scheme assumes the transmission of a few streams using well-known codebook-based precoding as the digital precoding, and both a selection method of the fixed BF weights and a digital precoder design, which are suitable for super high bit rate transmission using multiple streams, have not been studied. This paper proposes a joint fixed BF and CSI-based precoding (called FBCP) scheme for the 5G Massive MIMO systems. FBCP first selects the analog fixed BF weights based on a maximum total received power criterion, and then it calculates an eigenmode (EM) precoding matrix by exploiting CSI. This paper targets a 5G system achieving over 20Gbps in the 20GHz band as one example. Throughput performances of the Massive MIMO using the proposed FBCP are evaluated by link level simulations using adaptive modulation and coding and it is shown that the proposed FBCP with the optimum number of selected beams (baseband chains) can use higher level modulation, up to 256QAM, and higher coding rates and achieve throughputs close to 30Gbps while the cost and complexity can be reduced compared with the fully digital Massive MIMO.

  • Generation of Arbitrarily Patterned Pulse Trains in the THz Range by Spectral Synthesis of Optical Combs

    Isao MOROHASHI  Takahide SAKAMOTO  Norihiko SEKINE  Tetsuya KAWANISHI  Akifumi KASAMATSU  Iwao HOSAKO  

     
    PAPER-MWP Subsystem

      Vol:
    E98-C No:8
      Page(s):
    793-798

    We demonstrated generation of arbitrarily patterned optical pulse trains and frequency tunable terahertz (THz) pulses by spectral synthesis of optical combs generated by a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). In our approach, THz pulses were generated by photomixing of a multi-tone signal, which is elongated pulse train, and a single-tone signal. Both signals were extracted from a comb signal by using optical tunable bandpass filters. In the case of optical pulse train generation, the MZ-FCG generated comb signals with 10 GHz-spacing and 330 GHz-width, which was converted to a 2.85 ps-width pulse train by chirp compensation using a single-mode fiber. By combining the MZ-FCG with a pulse picker composed of a 40 Gbps intensity modulator, divided pulse trains and arbitrarily bit sequences were successfully generated. The single-mode light was extracted by an optical bandpass filter and the band-controlled pulse train was extracted by an optical bandpass filter. By photomixing them, a THz pulse was successfully generated. In the case of THz pulse generation, by photomixing a single-tone and a multi-tone signals extracted by tunable bandpass filters, THz pulses with a center frequency of 300 GHz was successfully generated. Furthermore, frequency tunability of the center frequency was also demonstrated.

  • Compact Electro-Optic Single Sideband Modulators Utilizing Miniaturized Branch-Line Couplers on LiNbO3 Substrate

    Katsuyuki YAMAMOTO  Tadashi KAWAI  Akira ENOKIHARA  Tetsuya KAWANISHI  

     
    PAPER-MWP Device and Application

      Vol:
    E98-C No:8
      Page(s):
    769-776

    Optical single sideband (SSB) modulation with the Mach-Zehnder (MZ) interferometer was realized by integrating the modulation electrode with the branch-line coupler (BLC) as a 90-degree hybrid onto the modulator substrate. In this paper, BLCs of the microsrtip-line structure were miniaturized on modulator substrates, LiNbO3 (LN), to realize more compact optical SSB modulators. We introduced two techniques of miniaturizing the BLC, one is using periodically installed open-circuited stabs and the other is installing series capacitors. Compared with a conventional pattern of the BLC, an area of the miniaturized BLC by using periodically installed open-circuited stubs was reduced to about 50%, and that by installing series capacitors was done to about 60%. The operation of these miniaturized BLCs was experimentally confirmed as the 90-degree hybrid at around 10GHz. Output ports of each miniaturized BLC were directly connected with the modulation electrode on the modulator substrate. Thereby, we fabricated two types of compact SSB modulators for 1550nm light wavelength. In the experiments, the optical SSB modulation was successfully confirmed by the output light spectra and the sideband suppression ratio of more than 30dB were observed.

  • Design and Fabrication of Three-Bit Reconfigurable Bandpass Filter Using Branch-Line Type Variable Resonator

    Ryosuke KOBAYASHI  Takumi KATO  Kazuhiro AZUMA  Yasushi YAMAO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:7
      Page(s):
    636-643

    Current mobile communication terminals are equipped with multiple RF circuits that cover all frequency bands assigned for the communication. In order to make efficient use of frequency spectrum and to reduce circuits in a terminal, a low-loss reconfigurable RF filter is necessary to flexibly change RF frequencies. In this paper, a new reconfigurable bandpass filter (BPF) having eight-frequency (three-bit) selection capability is proposed. It employs branch-line switched type variable resonators that provide low insertion loss. One of the design issues is how to control pass bandwidths among selectable frequencies. In order to analyze the bandwidth variation of the reconfigurable BPF, we calculate the changes of external Q and coupling coefficients. It is shown that the inductive coupling design can achieve less variation of bandwidth for the reconfigurable BPF, compared with commonly used capacitive coupling design. A prototype BPF on a printed circuit board with high dielectric constant substrate has been fabricated and evaluated in 2 GHz bands. It presents performance very close to the design results with respect to insertion loss, center frequency and passband bandwidth. Low insertion loss of less than 1 dB is achieved among the eight frequencies.

  • Investigation on a Multi-Band Inverted-F Antenna Sharing Only One Shorting Strip among Multiple Branch Elements

    Tuan Hung NGUYEN  Takashi OKI  Hiroshi SATO  Yoshio KOYANAGI  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:7
      Page(s):
    1302-1315

    This paper presents the detailed investigations on a simple multi-band method that allows inverted-F antennas (IFAs) to achieve good impedance matching in many different frequency bands. The impressive simplicity of the method arises from its sharing of a shorting strip among multiple branch elements to simultaneously generate independent resonant modes at arbitrary frequencies. Our simulation and measurement results clarify that, by adjusting the number of branch elements and their lengths, it is very easy to control both the total number of resonant modes and the position of each resonant frequency with impedance matching improved concurrently by adjusting properly the distance ds between the feeding and shorting points. The effectiveness of the multi-band method is verified in antenna miniaturization designs, not only in the case of handset antenna, but also in the design upon an infinite ground plane. Antenna performance and operation principles of proposed multi-band models in each case are analyzed and discussed in detail.

  • Concurrent Multi-Band Mixer with Independent and Linear Gain Control

    Takana KAHO  Yo YAMAGUCHI  Hiroyuki SHIBA  Tadao NAKAGAWA  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    659-668

    Novel multi-band mixers that can receive multiple band signals concurrently are proposed and evaluated. The mixers achieve independent gain control through novel relative power control method of the multiple local oscillator (LO) signals. Linear control is also achieved through multiple LO signal input with total LO power control. Theoretical analysis shows that odd-order nonlinearity components of the multiple LO signals support linear conversion gain control. Dual- and triple-band tests are conducted using typical three MOSFET mixers fabricated by a 0.25 µm SiGe BiCMOS process. Measurements confirm over 40 dB independent control of conversion gain, linear control achieved through LO input power control. The proposed mixers have high input linearity with a 5 dBm output third intercept point. A method is also proposed to reduce interference caused by mixing between multiple LO signals.

  • Rejection of the Position Dependent Disturbance Torque of Motor System with Slowly Varying Parameters and Time Delays

    Daesung JUNG  Youngjun YOO  Sangchul WON  

     
    PAPER-Systems and Control

      Vol:
    E98-A No:7
      Page(s):
    1494-1503

    This paper proposes an updating state dependent disturbance observer (USDDOB) to reject position dependent disturbances when parameters vary slowly, and input and output are time-delayed. To reject the effects of resultant slowly-varying position dependent disturbances, the USDDOB uses the control method of the state dependent disturbance observer (SDDOB) and time-invariance approximation. The USDDOB and a main proportional integral (PI) controller constitute a robust controller. Simulations and experiments using a 1-degree-of-freedom (1-DOF) tilted planar robot show the effectiveness of the proposed method.

  • Adding Robustness to Cascade Control of DC Motor Velocity via Disturbance Observers

    In Hyuk KIM  Young Ik SON  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:6
      Page(s):
    1305-1309

    Since the conventional cascade controller for electric motor drives requires accurate information about the system parameters and load conditions to achieve a desired performance, this paper presents a new practical control structure to improve the robust performance against parameter uncertainties. Two first-order disturbance observers (DOB) are incorporated with the cascade structure, to preserve the nominal performance. The analysis of the robust performance of the DOB is presented by using the singular perturbation theory. Simulation results suggest that the proposed controller can be used effectively as an additional compensator to the conventional cascade scheme.

  • Cascade Connection of Two Long-Period Fiber Gratings with a π-Phase Shift to Expand the Rejection Bandwidths

    Fatemeh ABRISHAMIAN  Katsumi MORISHITA  

     
    PAPER-Optoelectronics

      Vol:
    E98-C No:6
      Page(s):
    512-517

    A novel method was developed to expand and adjust the bandwidth of long-period fiber gratings (LPFGs) as band-rejection filters. The band-rejection filters were constructed by concatenating two LPFGs with an appropriate space, that causes a $pi$-phase shift. The component LPFGs with the same period and the different numbers of periods are designed to have $-$3-dB transmission at wavelengths on both sides of a resonance wavelength symmetrically, and the transmission loss of the concatenated LPFGs peaks at the -3-dB transmission wavelengths. The rejection bandwidth was widened by changing the interval between the -3-dB transmission wavelengths. The concatenated LPFGs were simulated by using a transfer-matrix method based on a discrete coupling model, and were fabricated by a point-by-point arc discharge technique on the basis of the simulation results. It was demonstrated that the rejection bandwidth at 20-dB attenuation reached 26.6,nm and was 2.7 times broader than that of a single uniform LPFG.

  • A Linguistics-Driven Approach to Statistical Parsing for Low-Resourced Languages

    Prachya BOONKWAN  Thepchai SUPNITHI  

     
    PAPER

      Pubricized:
    2015/01/21
      Vol:
    E98-D No:5
      Page(s):
    1045-1052

    Developing a practical and accurate statistical parser for low-resourced languages is a hard problem, because it requires large-scale treebanks, which are expensive and labor-intensive to build from scratch. Unsupervised grammar induction theoretically offers a way to overcome this hurdle by learning hidden syntactic structures from raw text automatically. The accuracy of grammar induction is still impractically low because frequent collocations of non-linguistically associable units are commonly found, resulting in dependency attachment errors. We introduce a novel approach to building a statistical parser for low-resourced languages by using language parameters as a guide for grammar induction. The intuition of this paper is: most dependency attachment errors are frequently used word orders which can be captured by a small prescribed set of linguistic constraints, while the rest of the language can be learned statistically by grammar induction. We then show that covering the most frequent grammar rules via our language parameters has a strong impact on the parsing accuracy in 12 languages.

  • Model for Estimating Effects of Human Body Shadowing in High Frequency Bands

    Ngochao TRAN  Tetsuro IMAI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E98-B No:5
      Page(s):
    773-782

    In this paper, we propose a simple model for estimating the effects of human body shadowing (HBS) in high frequency bands. The model includes two factors: the shadowing width (SW), which is the width of the area with shadowing loss values greater than 0dB, and the median shadowing loss value (MSLV), which is obtained by taking the median of the shadowing loss values within the SW. These factors are determined by formulas using parameters, i.e. frequency, distance between the base station (BS) and human body, distance between the terminal and human body, BS antenna height, and direction of the human body. To obtain the formulas, a method for calculating the effects of HBS based on the uniform theory of diffraction (UTD) and a human body model comprising lossy dielectric flat plates is proposed and verified. Then, the general forms of the formulas are predicted using the theory of knife-edge diffraction (KE). A series of computer simulations using the proposed calculation method with random changes in parameters is conducted to verify the general formulas and derive coefficients for these formulas through regression formulas.

  • Rice Channel Realization for BAN Over-The-Air Testing Using a Fading Emulator with an Arm-Swinging Dynamic Phantom

    Kun LI  Kazuhiro HONDA  Koichi OGAWA  

     
    PAPER

      Vol:
    E98-B No:4
      Page(s):
    543-553

    This paper presents a new methodology for realizing a Rice channel in BAN Over-The-Air (OTA) testing using a fading emulator with a dynamic phantom. For the proposed apparatus to be effective, the fading emulator must be provided with an appropriate K-factor that represents the actual propagation environment indoors. Further, an implementation of the Rice channel to the proposed fading emulator in a BAN situation is presented. Thereafter, a calibration method for the fading emulator to adjust the actual K-factor of the on-body Rice channel is advanced. This calibration method is validated by analyzing the variations in the instantaneous K-factor attributed to the arm-swinging motion. Finally, an experiment is conducted for a continuous human walking motion with the fading emulator using an arm-swinging dynamic phantom. The results show that the developed fading emulator allows BAN-OTA testing to replicate the actual Rice channel propagation environment with the consideration of the dynamic characteristics of human walking motion.

  • Dual-Band Sensor Network for Accurate Device-Free Localization in Indoor Environment with WiFi Interference

    Manyi WANG  Zhonglei WANG  Enjie DING  Yun YANG  

     
    PAPER-Network Computing and Applications

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    596-606

    Radio Frequency based Device-Free Localization (RFDFL) is an emerging localization technique without requirements of attaching any electronic device to a target. The target can be localized by means of measuring the shadowing of received signal strength caused by the target. However, the accuracy of RFDFL deteriorates seriously in environment with WiFi interference. State-of-the-art methods do not efficiently solve this problem. In this paper, we propose a dual-band method to improve the accuracy of RFDFL in environment without/with severe WiFi interference. We introduce an algorithm of fusing dual-band images in order to obtain an enhanced image inferring more precise location and propose a timestamp-based synchronization method to associate the dual-band images to ensure their one-one correspondence. With real-world experiments, we show that our method outperforms traditional single-band localization methods and improves the localization accuracy by up to 40.4% in real indoor environment with high WiFi interference.

  • Narrowband Interference Mitigation Based on Compressive Sensing for OFDM Systems

    Sicong LIU  Fang YANG  Chao ZHANG  Jian SONG  

     
    LETTER-Noise and Vibration

      Vol:
    E98-A No:3
      Page(s):
    870-873

    A narrowband interference (NBI) estimation and mitigation method based on compressive sensing (CS) for communication systems with repeated training sequences is investigated in this letter. The proposed CS-based differential measuring method is performed through the differential operation on the inter-block-interference-free regions of the received adjacent training sequences. The sparse NBI signal can be accurately recovered from a time-domain measurement vector of small size under the CS framework, without requiring channel information or dedicated resources. Theoretical analysis and simulation results show that the proposed method is robust to NBI under multi-path fading channels.

  • Experimental Validation of Digital Pre-distortion Technique for Dual-band Dual-signal Amplification by Single Feedback Architecture Employing Dual-band Mixer

    Ikuma ANDO  Gia Khanh TRAN  Kiyomichi ARAKI  Takayuki YAMADA  Takana KAHO  Yo YAMAGUCHI  Tadao NAKAGAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E98-C No:3
      Page(s):
    242-251

    In this paper we describe and experimentally validate a dual-band digital predistortion (DPD) model we propose that takes account of the intermodulation and harmonic distortion produced when the center frequencies of input bands have a harmonic relationship. We also describe and experimentally validate our proposed novel dual-band power amplifier (PA) linearization architecture consisting of a single feedback loop employing a dual-band mixer. Experiment results show that the DPD linearization the proposed model provides can compensate for intermodulation and harmonic distortion in a way that the conventional two-dimensional (2-D) DPD approach cannot. The proposed feedback architecture should make it possible to simplify analog-to-digital converter (ADC) design and eliminate the time lag between different feedback paths.

  • Ku/Ka-band Compact Orthomode Junction with Low Pass Filters for High Power Applications

    Hidenori YUKAWA  Koji YOSHIDA  Tomohiro MIZUNO  Tetsu OWADA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:2
      Page(s):
    156-161

    This paper presents a compact orthomode junction with low pass filters for high power applications. It consists of a circular waveguide step, a matching element for a high frequency band, and coupling sections straddle the circular waveguide step. These dimensions were optimized to achieve wideband performances and to support a high power rating. The structure without rectangular to circular transition is simple and comprised of two milled layers to divide E-plane of corrugated low pass filters. It can be easily manufactured and has low losses. The fabricated Ku/Ka-band orthomode junction was measured including power handling test of 2,kW at Ku-band. The measurement results demonstrated return loss of 21,dB and loss of 0.2,dB in the Ku- and Ka- band.

  • Wideband and Ultra Wideband Radio Propagation in Heavy Multipath Environments

    Takehiko KOBAYASHI  Miyuki HIROSE  

     
    INVITED PAPER

      Vol:
    E98-A No:2
      Page(s):
    511-519

    The authors have focused on wideband, including ultra-wideband (UWB, 3.1 to 10.6GHz) radio propagation in various environments, such as a small space-craft and a passenger car, moreover on-body radio propagation measurements have been conducted. Many studies have been reported about indoor propagation for narrowband and wideband. However previous study has not been examined characteristics between 10-MHz and 1-GHz frequencies. In our previous study, UWB and narrowband propagation were measured in a UWB frequency band within closed/semi-closed spaces (e.g. a spacecraft, a passenger car, and a metal desk equipped with a metal partition). While narrowband propagation resulted in considerable spatial variations in propagation gain due to interferences caused by multipath environments, UWB yielded none. This implies that the UWB systems have an advantage over narrowband from a viewpoint of reducing fading margins. Thus, a use of UWB technology within spacecrafts has been proposed with a view to partially replacing wired interface buses with wireless connections. Adoption of wireless technologies within the spacecrafts could contribute to reduction in cable weight (and launching cost as a result), reduction in the cost of manufacture, more flexibility in layout of spacecraft subsystems, and reliable connections at rotary, moving, and sliding joints. Path gains and throughputs were also measured for various antenna settings and polarizations in the small spacecraft. Polarization configurations were found to produce almost no effect on average power delay profiles and substantially small effects on the throughputs. Furthermore, statistical channel models were proposed. Also UWB technologies have been considered for use in wireless body area networks (WBAN) because of their possible low power consumption and anti-multipath capabilities. A series of propagation measurements were carried out between on-body antennas in five different rooms. A new path loss and statistical models considering room volume had been proposed. In this paper, we evaluated propagation characteristics in heavy multipath environments, especially examined the channels at 10-MHz to 1-GHz frequencies.

  • Evaluation of Multi-GNSSs and GPS with 3D Map Methods for Pedestrian Positioning in an Urban Canyon Environment

    Li-Ta HSU  Feiyu CHEN  Shunsuke KAMIJO  

     
    PAPER

      Vol:
    E98-A No:1
      Page(s):
    284-293

    Highly accurate pedestrian position information is required in many applications, especially in automatic driving system. Global Positioning System (GPS) developed by American has proven itself reliability in most of the environments. Unfortunately, urban areas contain the signal reflection, known as multipath and non-line-of-sight (NLOS) effects. In addition, the lake of line-of-sight (LOS) satellites caused by the blockage of skyscrapers also severely degrades the accuracy and availability of the GPS positioning. To solve these problems, a solution that interoperated several Global Navigation Satellite Systems (GNSSs) is proposed. However, the actual difficulty of satellite positioning in urban area is the distorted satellite distribution. This paper proposes a GPS with 3D map ray tracing positioning method to conquer the difficulty. The proposed method takes the advantage of the non-LOS (NLOS) and uses it as an additional measurement. Significantly, these measurements are sourced from the satellites that should be blocked. Thus, the dilution of precision (DOP) can be greatly improved. To verify the performance of the proposed method, real data is collected at Tokyo urban area. This paper compares the performance of GPS/GLONASS and the proposed GPS with 3D map ray tracing methods. The results reveals the proposed method is capable of identifying which side of street the pedestrian stands and the GPS+GLONASS method is not.

  • A Compact Matched Filter Bank for a Mutually Orthogonal ZCZ Sequence Set Consisting of Ternary Sequence Pairs

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Sequences

      Vol:
    E97-A No:12
      Page(s):
    2595-2600

    In this paper, we propose a new structure for a compact matched filter bank for a mutually orthogonal zero-correlation zone (MO-ZCZ) sequence set consisting of ternary sequence pairs obtained by Hadamard and binary ZCZ sequence sets; this construction reduces the number of two-input adders and delay elements. The matched filter banks are implemented on a field-programmable gate array (FPGA) with 51,840 logic elements (LEs). The proposed matched filter bank for an MO-ZCZ sequence set of length 160 can be constructed by a circuit size that is about 8.6% that of a conventional matched filter bank.

301-320hit(1638hit)