The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IT(16991hit)

16741-16760hit(16991hit)

  • Improvement of Reverse Recovery Characteristic in Synchronous Rectifiers Using a Bipolar Transistor Driven by a Current Transformer

    Eiji SAKAI  Koosuke HARADA  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1179-1185

    It has been reported that the efficiency of a low voltage power supply is improved by replacing diodes in an output-stage with synchronous rectifiers (SR). A SR consists of a bipolar junction transistor with a low-saturation voltage and a current transformer. Although the SR has low offset-voltage, its reverse recovery characteristic is usually poor. In this paper, an RCD circuit which improves the reverse recovery characteristic of the SR is proposed. This circuit is simple, and it is composed of a diode, a capacitor and a resistor. The analysis and the experimental results of the SR with the proposed RCD circuit are presented. The optimum design of the RCD to improve the reverse recovery characteristic of SR is discussed.

  • A New Indexing Technique for Nested Queries on Composite Objects

    Yong-Moo KWON  Yong-Jin PARK  

     
    PAPER-Databases

      Vol:
    E75-D No:6
      Page(s):
    861-872

    A new indexing technique for rapid evaluation of nested query on composite object is propoced, reducing the overall cost for retrieval and update. An extended B+ tree is introduced in which object identifier (OID) to be searched and path information usud for update of index record are stored in leaf node and subleaf node, respectively. In this method, the retrieval oeration is applied only for OIDs in the leaf node. The index records of both leaf and subleaf nodes are updated in such a way that the path information in the subleaf node and OIDs in the leaf node are reorganized by deleting and inserting the OIDs. The techniaue presented offers advantages over currently related indexing techniques in data reorganization and index allocation. In the proposed index record, the OIDs to be reorganized are always consecutively provided, and thus only the record directory is updated when an entire page should be removed. In addition, the proposed index can be allocate to a path with the length greater than 3 without splitting the path. Comparisons under a variety of conditions are given with current indexing techniques, showing improved performance in cost, i.e., the total number of pages accessed for retrieval and update.

  • A Markovian Imperfect Debugging Model for Software Reliability Measurement

    Koichi TOKUNOH  Shigeru YAMADA  Shunji OSAKI  

     
    PAPER-Reliability, Availability and Vulnerability

      Vol:
    E75-A No:11
      Page(s):
    1590-1596

    Actual debugging actions during the testing phase in the software development and the operation phase are not always performed perfectly. In other words, all detected software faults are not corrected and removed certainly. Generally, this is called imperfect debugging. In this paper, we discuss a software reliability growth model considering imperfect debugging that faults are not always corrected/removed when they are detected. Defining a random variable representing the cumulative number of faults corrected up to a specified testing time, this model is described by a semi-Markov process. We derive various quantitative measures for software reliability assessment and show their numercal examples.

  • Recursive Copy Networks for Large Multicast ATM Switches

    Shigeru SHIMAMOTO  Wen De ZHONG  Yoshikuni ONOZATO  Jaidev KANIYIL  

     
    PAPER-Switching and Communication Processing

      Vol:
    E75-B No:11
      Page(s):
    1208-1219

    This paper presents a new architecture of a copy network which employs the principle of recursive generation of copy cells. The proposed architecture achieves high utilization of the links and buffers of the copy network, and preserves the cell sequence. The architecture lends itself modularity so that large multicast ATM switches can be fabricated by employing the proposed copy network. Two different modular structures - one for reduced latency of the unicast cell and the master cell from which copies are made, and the other for reduced hardware overhead - for realizing large multicast ATM switches are configured. The hardware of functional elements of the copy network are the same as those of the functional elements of a modular point-to-point switch proposed earlier, thereby resulting in the modularity of functional elements as well. Simulation studies show that the proposed copy network achieves high throughput and low cell loss probability, and the required buffer sizes are small. The delay of cells is found to be very small for traffic loads up to 90%.

  • An Efficient Reconstruction Algorithm for Diffraction Tomography

    Haruyuki HARADA  Takashi TAKENAKA  Mitsuru TANAKA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:11
      Page(s):
    1387-1394

    An efficient reconstruction algorithm for diffraction tomography based on the modified Newton-Kantorovich method is presented and numerically studies. With the Fréchet derivative obtained for the Helmholtz equation, one can derive an iterative formula for getting an object function, which is a function of refractive index of a scatterer. Setting an initial guess of the object function to zero, the pth estimate of the function is obtained by performing the inverse Fourier transform of its spectrum. Since the spectrum is bandlimited within a low-frequency band, the algorithm does not require usual regularization techniques to circumvent ill-posedness of the problem. For numerical calculation of the direct scattering problem, the moment method and the FFT-CG method are utilized. Computer simulations are made for lossless and homogeneous dielectric circular cylinders of various radii and refractive indices. In the iteration process of image reconstruction, the imaginary part of the object function is set to zero with a priori knowledge of the lossless scatterer. Then the convergence behavior of the algorithm remarkably gets improved. From the simulated results, it is seen that the algorithm provides high-quality reconstructed images even for cases where the first-order Born approximation breaks down. Furthermore, the results demonstrate fast convergence properties of the iterative procedure. In particular, we can successfully reconstruct the cylinder of radius 1 wavelength and refractive index that differs by 10% from the surrounding medium. The proposed algorithm is also effective for an object of larger radius.

  • A Study of Delay Time on Bit Lines in Megabit SRAM's

    Atsushi KINOSHITA  Shuji MURAKAMI  Yasumasa NISHIMURA  Kenji ANAMI  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1383-1386

    This paper describes the delay time on bit lines due to coupling capacitance between adjacent bit lines in megabit SRAM's. The delay time on bit lines in several generations of megabit SRAM's is quantitatively analyzed using device and circuit simulations. It is shown that narrowing the bit-line swing from 200 mV to 30 mV for future 16-Mbit SRAM's will effectively reduce the difference in delay time from 1.0 ns to 0.3 ns, and that a two-block devided bit line will lower the difference in the delay-time ratio to 3% in case of 15-ns access time.

  • Recessed Memory Array Technology for a Double Cylindrical Stacked Capacitor Cell of 256M DRAM

    Kazuhiko SAGARA  Tokuo KURE  Shoji SHUKURI  Jiro YAGAMI  Norio HASEGAWA  Hidekazu GOTO  Hisaomi YAMASHITA  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1313-1322

    This paper describes a novel Recessed Stacked Capacitor (RSTC) structure for 256 Mbit DRAMs, which can realize the requirements for both fine-pattern delineation with limited depth of focus and high cell capacitance. New technologies involved are the RSTC process, 0.25 µm phase-shift lithography and CVD-tungsten plate technology. An experimental memory array has been fabricated with the above technologies and 25 fF/cell capacitance is obtained for the first time in a 0.61.2 µm2 (0.72 µm2) cell.

  • Stabilization of Voltage Limiter Circuit for High-Density DRAM's Using Pole-Zero Compensation

    Hitoshi TANAKA  Masakazu AOKI  Jun ETOH  Masashi HORIGUCHI  Kiyoo ITOH  Kazuhiko KAJIGAYA  Tetsurou MATSUMOTO  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1333-1343

    To improve the stability and the power supply rejection ratio (PSRR) of the voltage limiter circuit used in high-density DRAM's we present a voltage limiter circuit with pole-zero compensation. Analytical expressions that describe the stability of the circuit are provided for comprehensive consideration of circuit design. Voltage limiters with pole-zero compensation are shown to have excellent performance with respect to the stability, PSRR, and circuit area occupation. The parasitic resistances in internal voltage supply lines, signal transmission lines, and transistors are important parameters determining the stability of pole-zero compensation. Evaluation of a 16-Mbit test device revealed internal voltage fluctuations of 6% during operation of a chip-internal circuit, a phase margin of 53, and a PSRR of 30 dB.

  • Matching of Edge-Line Images Using Relaxation

    Masao IZUMI  Takeshi ASANO  Kunio FUKUNAGA  Hideto MURATA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E75-D No:6
      Page(s):
    902-908

    In this pater, we propose a method for matching of two images (stereo, motion stereo, etc.) using relaxation. We have already proposed an algebraic expression of line images using unit vectors, and matching method based on similarity measure between two image graphs. This similarity measure of images is insensitive to scaling, rotation, gray level modification and small motion between the two images in the case when we examine image registration or image matching. The approach based on the line structural similarity results in high rate of correspondence between nodes of the two images. In order to obtain higher rate of correspondence, we introduce a relaxation method when examine the degree of similarity between the two images. Our relaxation method improves a relational similarity of correspondence between two image graphs in an iterative manner. The relational similarity is defined as a correct likelihood of correspondence between nodes in consideration of connective relationship of the image graphs. Finally, we show several experimental results which confirm effectiveness of our approach.

  • A Fault Tolerant Intercommunication Scheme Using Bank Memory Switching

    Norihiko TANAKA  Takakazu KUROKAWA  Takashi MATSUBARA  Yoshiaki KOGA  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    804-809

    This paper proposes a new fault tolerant intercommunication scheme for real-time operations and three new interconnection networks to construct a fault tolerant multi-processor system for pipeline processings. The proposed intercommunication scheme using bank memory switching technique has an advantage to make a fault tolerant pipeline system so that it can detect any failure caused in a processing element of the system. In addition, it can overcome conventional problems caused in interconnection circuits to flow data with one way direction such as a pipeline processing.

  • A New Method for Parameter and Input Estimation of Nonminimum Phase Systems

    Weimin SUN  Takashi YAHAGI  

     
    PAPER-Digital Signal Processing

      Vol:
    E75-A No:11
      Page(s):
    1570-1578

    This paper presents a new method for estimating both the parameters of a nonminimum phase system and its unknown input signal. An approximate inverse system method is used to estimate the unknown input signal, and then, by using a Kalman filter, approximately consistent parameter estimates of the nonminimum phase system can be obtained effectively. This method can be used to estimate the parameters of a nonminimum phase system and a minimum phase one in the case when the input signal is a white noise or an impulse sequence.

  • Analysis of Engine States and Automobile Features Based on Time-Dependent Spectral Characteristics

    Yumi TAKIZAWA  Shinichi SATO  Keisuke ODA  Atsushi FUKASAWA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1524-1532

    This paper describes a nonstationary spectral analysis method and its application to prognosis and diagnosis of automobiles. An instantaneous frequency spectrum is considered first at a single point of time based on the instantaneous representation of autocorrelation. The spectral distortion is then considered on two-dimensional spectrum, and the filtering is introduced into the instantaneous autocorrelations. By the above procedure, the Instantaneous Covariance method (ICOV), the Instantaneous Maximum Entropy Method (IMEM), and the Wigner method are shown and they are unified. The IMEM is used for the time-dependent spectral estimation of vibration and acoustic sound signals of automobiles. A multi-dimensional (M-D) space is composed based on the variables which are obtained by the IMEM. The M-D space is transformed into a simple two-dimensional (2-D) plane by a projection matrix chosen by the experiments. The proposed method is confirmed useful to analyze nonstationary signals, and it is expected to implement automatic supervising, prognosis and diagnosis for a traffic system.

  • An Algebraic Specification of a Daisy Chain Arbiter

    Yu Rong HOU  Atsushi OHNISHI  Yuji SUGIYAMA  Takuji OKAMOTO  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    778-784

    There have been few studies on formal approaches to the specification and realization of asynchronous sequential circuits. For synchronous sequential circuits, an algebraic method is proposed as one of such approaches, but it cannot be applied to asynchronous ones directly. This paper describes an algebraic method of specifying the abstract behavior of asynchronous sequential circuits. We select an daisy chain arbiter as an example of them. In the arbiter, state transitions are caused by input changes, and all the modules do not always make state transitions simultaneously. These are main obstacles to specify it in the same way as sychronous sequential circuits. In order to remove them, we modify the meaning of input in specifications and introduce pseudo state transitions so that we can regard all the modules as if they make state transitions simultaneously. This method can be applied to most of the other asynchronous sequential circuits.

  • A General Analysis of the Zero-Voltage Switched Quasi-Resonant Buck-Boost Type DC-DC Converter in the Continuous and Discontinuous Modes of the Reactor Current

    Hirofumi MATSUO  Hideki HAYASHI  Fujio KUROKAWA  Mutsuyoshi ASANO  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1159-1170

    The characteristics of voltage-resonant dc-dc converters have already been analyzed and described. However, in the conventional analysis, the inductance of the reactor is assumed to be infinity and the loss resistance of the power circuit is not taken into account. Also, in some cases, the averaging method is applied to analyze the resonant dc-dc converters as well as the pwm dc-dc converters. Consequently, the results from conventional analysis are not entirely in agreement with the experimental ones. This paper presents a general design-oriented analysis of the buck-boost type voltage-resonant dc-dc converter in the continuous and discontinuous modes of the reactor current. In this analysis, the loss resistance in each part of the power circuit, the inductance of the reactor, the effective value (not mean value) of the power loss, and the energy-balance among the input, output and internal-loss powers are taken into account. As a result, the behavior and characteristics of the buck-boost type voltage-resonant dc-dc converter are fully explained. It is also revealed that there is a useful mode in the discontinuous reactor current region, in which the output voltage can be regulated sufficiently for the load change from no load to full load and for the relatively large change of the input voltage, and then the change in the switching frequency can be kept relatively small.

  • A High-Input-Voltage Converter Operating at 200kHz

    Satoshi OHTSU  Hisao ISHII  Takashi YAMASHITA  Toshiyuki SUGIURA  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1151-1158

    A new circuit and a transformer structure is described for a high-input-voltage converter operating at a high switching frequency. The two-MOSFET forward converter is suitable for a high-input-voltage converter. To increase the switching frequency, the reset period of the transformer core flux must be reduced. There are a few methods for decreasing the reset period. Increasing the transformer flyback voltage and reducing its stray capacitance are effective in decreasing the reset period without increasing power loss. A new two-MOSFET forward converter is proposed which uset the increased flyback voltage and a transformer structure to reduce the stray capacitance. The new converter using this transformer provides the basis for a 48-V, 100-W output, 270-V input converter operating at 200kHz with high efficiency (above 95%).

  • Waveform Estimation of Sound Sources in a Reverberant Environment with Inverse Filters

    Kiyohito FUJII  Masato ABE  Toshio SONE  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1484-1492

    This paper proposes a method to estimate the waveform of a specified sound source in a noisy and reverberant environment using a sensor array. Previously, we proposed an iterative method to estimate the waveform. However, in this method the effect of reflection sound reduces to 1/M, where M is the number of microphones. Therefore, to solve the reverberation problem, we propose a new method using inverse filters of the transfer functions from the sound sources to each microphone. First, the transfer function from each sound source to each microphone is measured by the cross-spectrum technique and each inverse filter is calculated by the QR method. Then the initially estimated waveform of a sound source is the averaged signal of the inverse filter outputs. Since this waveform still contains the effects of the other sound sources, the iterative technique is adopted to estimate the waveform more precisely, reducing the effects of the other sound and the reflection sound. Some computer simulations and experiments were carried out. The results show the effectiveness of our method.

  • Discrete Time Modeling and Digital Signal Processing for a Parameter Estimation of Room Acoustic Systems with Noisy Stochastic Input

    Mitsuo OHTA  Noboru NAKASAKO  Kazutatsu HATAKEYAMA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1460-1467

    This paper describes a new trial of dynamical parameter estimation for the actual room acoustic system, in a practical case when the input excitation is polluted by a background noise in contrast with the usual case when the output observation is polluted. The room acoustic system is first formulated as a discrete time model, by taking into consideration the original standpoint defining the system parameter and the existence of the background noise polluting the input excitation. Then, the recurrence estimation algorithm on a reverberation time of room is dynamically derived from Bayesian viewpoint (based on the statistical information of background noise and instantaneously observed data), which is applicable to the actual situation with the non-Gaussian type sound fluctuation, the non-linear observation, and the input background noise. Finally, the theoretical result is experimentally confirmed by applying it to the actual estimation problem of a reverberation time.

  • A Symmetrical Side Wall (SSW)-DSA Cell and the Channel Erasing Scheme for a 64 Mbit Flash Memory

    Ken-ichi OYAMA  Noriaki KODAMA  Hiroki SHIRAI  Kenji SAITOH  Yosiaki S. HISAMUNE  Takeshi OKAZAWA  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1358-1363

    A 0.4 µm stacked gate cell for a 64 Mbit flash memory has been developed which has the Symmetrical Side Wall Diffusion Self Aligned (SSW-DSA) structure. Using the proposed SSW-DSA cell with p+ pockets at both the drain and the source, and adequate punchthrough resistance to scale the gate length down to sub-half-micron has been obtained. It is also demonstrated that the channel erasing scheme applying negative bias to the gate, which is adopted for the SSW-DSA cell, shows lower trapped charges after Write/Erase (W/E) cycles evaluated by a charge pumping technique, and results in better endurance an retention characteristics than conventional erasing schemes.

  • Soft-Error Immune 180-µm2 SICOS Upward Transistor Memory Cell for Ultra-High-Speed High-Density Bipolar RAMs

    Youji IDEI  Takeo SHIBA  Noriyuki HOMMA  Kunihiko YAMAGUCHI  Tohru NAKAMURA  Takahiro ONAI  Youichi TAMAKI  Yoshiaki SAKURAI  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1369-1376

    This paper describes a new soft-error-immune SICOS upward transistor memory cell suitable for ultra-high-speed bipolar RAMs. A cell size of 180 µm2, significantly smaller than the 500 µm2 in the conventional upward transistor cell, is achieved by marging an upward transistor and a Shottky barrier diode. A new very thin polysilicon resistor and 0.5-µm U-groove isolated SICOS technology are used to furher reduce cell size. The memory cell is about 105 times as immune to soft errors as downward transistor cells. A simulation shows that a 256-Kbit RAM with a write cycle time below 3 ns can be made using this memory cell.

  • A Fast Adaptive Algorithm Suitable for Acoustic Echo Canceller

    Kensaku FUJII  Juro OHGA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1509-1515

    This paper relates to a novel algorithm for fast estimation of the coefficients of the adaptive FIR filter. The novel algorithm is derived from a first order IIR filter experssion clarifying the estimation process of the NLMS (normalized least mean square) algorithm. The expression shows that the estimation process is equivalent to a procedure extracting the cross-correlation coefficient between the input and the output of an unknown system to be estimated. The interpretation allows to move a subtraction of the echo replica beyond the IIR filter, and the movement gives a construction with the IIR filter coefficient of unity which forms the arithmetic mean. The construction in comparison with the conventional NLMS algorithm, improves the covergence rate extreamly. Moreover, when we use the construction with a simple technique which limits the term of calculating the correlation coefficient in the beginning of a convergence process, the convergence delay becomes negligible. This is a very desirable performance for acoustic echo canceller. In this paper, double-talk and echo path fluctuation are also studied as the first stage for application to acoustic echo canceller. The two subjects can be resolved by introducing two switches and delays into the evaluation process of the correlation coefficient.

16741-16760hit(16991hit)