The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

8141-8160hit(8249hit)

  • Linear Transformations between Embedded Processes Associated with M/M/1 Queueing Systems

    Toshikane ODA  Aurel A. LAZAR  

     
    PAPER

      Vol:
    E75-B No:12
      Page(s):
    1308-1314

    The embedded Markov processes associated with Markovian queueing systems are closely related, and their relationships are important for establishing an analytical basis for performance evaluation techniques. As a first step, we analyze the embedded processes associated with a general M/M/1 queueing system. Linear transformations between the infinitesimal generators and the transition probability matrices of embedded processes at arrival and departure times are explicitly derived. Based upon these linear transformations, the equilibrium distributions of the system states at arrival and departure times are obtained and expressed in terms of the equilibrium distribution at arbitrary times. The approach presented here uncovers an underlying algebraic structure of M/M/1 queueing systems, and establishes an algebraic methodology for analyzing the equilibrium probabilities of the system states at arrival and departure times for more general Markovian queueing systems.

  • On the Expressions for the Norton's Surface Wave of a Vertical Dipole

    Akira YOKOYAMA  

     
    LETTER-Antennas and Propagation

      Vol:
    E75-B No:12
      Page(s):
    1376-1378

    Ideal style of arguments of the error function complement contained in the expression for the Norton's surface wave of a vertical dipole over the plane earth is discussed, and then it is pointed out that new formulas have not necessarily desired form as compared with old ones.

  • A Newton Algorithm for Computing the Capacity of Discrete Memoryless Channels

    Kiyotaka YAMAMURA  

     
    PAPER-Numerical Analysis and Self-Validation

      Vol:
    E75-A No:11
      Page(s):
    1583-1589

    This paper presents an efficient algorithm for computing the capacity of discrete memoryless channels. The algorithm uses Newton's method which is known to be quadratically convergent. First, a system of nonlinear equations termed Kuhn-Tucker equations is formulated, which has the capacity as a solution. Then Newton's method is applied to the Kuhn-Tucker equations. Since Newton's method does not guarantee global convergence, a continuation method is also introduced. It is shown that the continuation method works well and the convergence of the Newton algorithm is guaranteed. By numerical examples, effectiveness of the algorithm is verified. Since the proposed algorithm has local quadratic convergence, it is advantageous when we want to obtain a numerical solution with high accuracy.

  • A High-Input-Voltage Converter Operating at 200kHz

    Satoshi OHTSU  Hisao ISHII  Takashi YAMASHITA  Toshiyuki SUGIURA  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1151-1158

    A new circuit and a transformer structure is described for a high-input-voltage converter operating at a high switching frequency. The two-MOSFET forward converter is suitable for a high-input-voltage converter. To increase the switching frequency, the reset period of the transformer core flux must be reduced. There are a few methods for decreasing the reset period. Increasing the transformer flyback voltage and reducing its stray capacitance are effective in decreasing the reset period without increasing power loss. A new two-MOSFET forward converter is proposed which uset the increased flyback voltage and a transformer structure to reduce the stray capacitance. The new converter using this transformer provides the basis for a 48-V, 100-W output, 270-V input converter operating at 200kHz with high efficiency (above 95%).

  • A Study of High-Performance NAND Structured EEPROMS

    Tetsuo ENDOH  Riichiro SHIROTA  Seiichi ARITOME  Fujio MASUOKA  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1351-1357

    This paper describes the superior performances of the NAND EEPROM. Those are 1) a very small cell area: 4.83 µm2 using 0.7 µm design rule, 2) small block size for erasing: 4 Kbyte block erasing for 4 M-bit NAND EEPROM, 3) high speed programming: 180 nsec per byte for 4 M-bit NAND EEPROM, 4) large number of erase/program endurance cycles: more than 105 cycles for 4 M-bit NAND EEPROM. These extended performances coincide with the requirement for the EEPROM to replace magnetic memories such as hard and floppy disks. Especially, it is shown that NAND EEPROM has the capability to enlarge the erase/program endurance up to 3.6108 cycles. This endurance is a result of the erase and program mechanism of the NAND EEPROM cell. Fowler-Nordheim (F-N) tunneling currents flow from the substrate to the floating gate during programming and opposite currents flow during erasing. This bi-polarity F-N tunneling erase/program operation extends the life time of the tunnel oxide which results in an improved endurance.

  • Recessed Memory Array Technology for a Double Cylindrical Stacked Capacitor Cell of 256M DRAM

    Kazuhiko SAGARA  Tokuo KURE  Shoji SHUKURI  Jiro YAGAMI  Norio HASEGAWA  Hidekazu GOTO  Hisaomi YAMASHITA  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1313-1322

    This paper describes a novel Recessed Stacked Capacitor (RSTC) structure for 256 Mbit DRAMs, which can realize the requirements for both fine-pattern delineation with limited depth of focus and high cell capacitance. New technologies involved are the RSTC process, 0.25 µm phase-shift lithography and CVD-tungsten plate technology. An experimental memory array has been fabricated with the above technologies and 25 fF/cell capacitance is obtained for the first time in a 0.61.2 µm2 (0.72 µm2) cell.

  • A Study of Delay Time on Bit Lines in Megabit SRAM's

    Atsushi KINOSHITA  Shuji MURAKAMI  Yasumasa NISHIMURA  Kenji ANAMI  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1383-1386

    This paper describes the delay time on bit lines due to coupling capacitance between adjacent bit lines in megabit SRAM's. The delay time on bit lines in several generations of megabit SRAM's is quantitatively analyzed using device and circuit simulations. It is shown that narrowing the bit-line swing from 200 mV to 30 mV for future 16-Mbit SRAM's will effectively reduce the difference in delay time from 1.0 ns to 0.3 ns, and that a two-block devided bit line will lower the difference in the delay-time ratio to 3% in case of 15-ns access time.

  • Thresholding Characteristics of an Optically Addressable GaAs-pin/Ferroelectric Liquid Crystal Spatial Light Modulator and Its Applications

    Masashi HASHIMOTO  Yukio FUKUDA  Shigeki ISHIBASHI  Ken-ichi KITAYAMA  

     
    LETTER-Opto-Electronics

      Vol:
    E75-C No:11
      Page(s):
    1395-1398

    The newly developed GaAs-pin/SLM, that is structured with a GaAs-pin diode photodetector and a ferroelectric liquid crystal as the light phase modulator, shows the accumulative thresholding characteristic against the optical energy of the write-in pulse train. We experimentally investigate this characteristic and discuss its applications to optical parallel processings.

  • Generalization Ability of Feedforward Neural Network Trained by Fahlman and Lebiere's Learning Algorithm

    Masanori HAMAMOTO  Joarder KAMRUZZAMAN  Yukio KUMAGAI  Hiromitsu HIKITA  

     
    LETTER-Neural Networks

      Vol:
    E75-A No:11
      Page(s):
    1597-1601

    Fahlman and Lebiere's (FL) learning algorithm begins with a two-layer network and in course of training, can construct various network architectures. We applied FL algorithm to the same three-layer network architecture as a back propagation (BP) network and compared their generalization properties. Simulation results show that FL algorithm yields excellent saturation of hidden units which can not be achieved by BP algorithm and furthermore, has more desirable generalization ability than that of BP algorithm.

  • Derivation of a Parallel Bottom-Up Parser from a Sequential Parser

    Kazuko TAKAHASHI  

     
    PAPER-Software Theory

      Vol:
    E75-D No:6
      Page(s):
    852-860

    This paper describes the derivation of a parallel program from a nondeterministic sequential program using a bottom-up parser as an example. The derivation procedure consists of two stages: exploitation of AND-parallelism and exploitation of OR-parallelism. An interpreter of the sequential parser BUP is first transformed so that processes for the nodes in a parsing tree can run in parallel. Then, the resultant program is transformed so that a nondeterministic search of a parsing tree can be done in parallel. The former stage is performed by hand-simulation, and the latter is accomplished by the compiler of ANDOR-, which is an AND/OR parallel logic programming language. The program finally derived, written in KL1 (Kernel Language of the FGCS Project), achieves an all-solution search without side effects. The program generated corresponds to an interpreter of PAX, a revised parallel version of BUP. This correspondence shows that the derivation method proposed in this paper is effective for creating efficient parallel programs.

  • A Design Method for Cost-Effective Self-Testing Checker for Optimal d-Unidirectional Error Detecting Codes

    Eiji FUJIWARA  Masakatsu YOSHIKAWA  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    771-777

    Unidirectional/Asymmetric error control codes have extensively been studied, not only from theoretical interest but from application to computer systems or communication systems. Recently, attention has been focused on detecting only d, not all, unidirectional errors, that is, d bits unidirectional error ditecting (d-UED) codes. Borden proposed an optimal nonsystematic d-UED code. This paper shows a new design method for cost-effective self-testing checker for the optimal d-UED code. The checking policy is to check whether condition of the Borden code satisfies or not. The proposed checker includes the parallel weight counter, the comparator and th e modulo adder in which new residue operation is defined and hence this makes the circuit self-testing. These circuits are designed to have all possible input patterns in order to satisfy self-testing property. Finally, the proposed checker has greatly reduced hardware amount compared to the existing one.

  • Discrete Time Modeling and Digital Signal Processing for a Parameter Estimation of Room Acoustic Systems with Noisy Stochastic Input

    Mitsuo OHTA  Noboru NAKASAKO  Kazutatsu HATAKEYAMA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1460-1467

    This paper describes a new trial of dynamical parameter estimation for the actual room acoustic system, in a practical case when the input excitation is polluted by a background noise in contrast with the usual case when the output observation is polluted. The room acoustic system is first formulated as a discrete time model, by taking into consideration the original standpoint defining the system parameter and the existence of the background noise polluting the input excitation. Then, the recurrence estimation algorithm on a reverberation time of room is dynamically derived from Bayesian viewpoint (based on the statistical information of background noise and instantaneously observed data), which is applicable to the actual situation with the non-Gaussian type sound fluctuation, the non-linear observation, and the input background noise. Finally, the theoretical result is experimentally confirmed by applying it to the actual estimation problem of a reverberation time.

  • Binaural Signal Processing and Room Acoustics Planning

    Jens BLAUERT  Markus BODDEN  Hilmar LEHNERT  

     
    INVITED PAPER

      Vol:
    E75-A No:11
      Page(s):
    1454-1459

    The process of room acoustic planning & design can be aided by Binaural Technology. To this end, a three-stage modelling process is proposed that consists of a "sound"-specification phase, a design phase and a work-plan phase. Binaural recording, reproduction and room simulation techniques are used throughout the three phases allowing for subjective/objective specification and surveillance of the design goals. The binaural room simulation techniques involved include physical scale models and computer models of different complexity. Some basics of binaural computer modelling of room acoustics are described and an implementation example is given. Further the general structure of a software system that tries to model important features of the psychophysics of binaural interaction is reported. The modules of the model are: outer-ear simulation, middle-ear simulation, inner-ear simulation, binaural processors, and the final evaluation stage. Using this model various phenomena of sound localization and spatial hearing, such as lateralization, multiple-image phenomena, summing localization, the precedence effect, and auditory spaciousness, can be simulated. Finally, an interesting application of Binaural Technology is presented, namely, a so called Cocktail-Party-Processor. This processor uses the predescribed binaural model to estimate signal parameters of a desired signal which may be distored by any type of interfering signals. In using this strategy, the system is able to even separate the signals of competitive speakers.

  • Performance Evaluation of a Translation Look-Aside Buffer for Highly Integrated Microprocessors

    Norio UTSUMI  Akifumi NAGAO  Tetsuro YOSHIMOTO  Ryuichi YAMAGUCHI  Jiro MIYAKE  Hisakazu EDAMATSU  

     
    PAPER-RISC Technologies

      Vol:
    E75-C No:10
      Page(s):
    1202-1211

    This paper describes the performance evaluation of the Translation Look-aside Buffer (TLB) for highly integrated microprocessors, especially concerning the TLB in the SPARC Reference MMU specification. The analysis covers configurations, the number of entries, and replacement algorithms for the instruction TLB and the data TLB, which are assumed to be practically integrated on one die. We also present performance improvement using a Page Table Cache (PTC). We evaluate some types of TLB configurations with software simulation and excute the Systems Performance Evaluation Cooperative (SPEC) programs.

  • A New Array Architecture for 16 Mb DRAMs with Special Page Mode

    Masaki TSUKUDE  Tsukasa OISHI  Kazutami ARIMOTO  Hideto HIDAKA  Kazuyasu FUJISHIMA  

     
    PAPER-Integrated Electronics

      Vol:
    E75-C No:10
      Page(s):
    1267-1274

    An improved array architecture to realize fast access, low power dissipation, and wide operating margin, for the 16 Mbit DRAM is proposed. A high speed access is obtained by the fully embedded sense drive scheme for the RAS access time (tRAC), and the special page mode with the hierarchical I/O data bus lines and multi-purpose-register (MPR) for the column address access time (tCAA). A low power dissipation and wide operating margin are obtained by the improved twisted-bit-line (TBL) architecture with double dummy canceling. The 16 Mb DRAM using these architectures has 38 ns tRAC, 14 ns tCAA and 75 mA power dissipation at the typical condition.

  • Centralized Virtual Path Bandwidth Allocation Scheme for ATM Networks

    Michael LOGOTHETIS  Shigeo SHIODA  

     
    PAPER-Communication Networks and Service

      Vol:
    E75-B No:10
      Page(s):
    1071-1080

    This paper deals with a network architecture based on a backbone network, using ATM switches (ATM-SW) and ATM Cross-Connect Systems (ATM-XC). The backbone network is efficiently utilized by multiple-routing scheme. The performance of the network is controlled, exploiting the concept of Virtual Paths (VP) in ATM technology. The network is controlled by allocating the bandwidth of VPs so as to minimize the worst call blocking probability of all ATM-SW pairs, under the constraints of the ATM-SW capacities and the bandwidths of transmission paths in the backbone network. To improve network performance, we use a trunk reservation scheme among service classes. We propose a heuristic approach to solve the problem of non-linear integer programming. Evaluation of the proposed optimization scheme, in comparison to other optimal methods, shows the efficiency of the present scheme.

  • Traffic Shaping for VBR Traffic in ATM Networks

    Naoaki YAMANAKA  Youichi SATO  Ken-ichi SATO  

     
    LETTER-Communication Networks and Service

      Vol:
    E75-B No:10
      Page(s):
    1105-1108

    The effectiveness of traffic shaping for VBR traffic is analyzed. Evaluation results prove that traffic shaping can improve link efficiency for most forms of bursty VBR traffic and that link efficiency gains of more than 250% can be expected without the shaping delay imposing any significant QOS deterioration. Traffic shaping increases the link efficiency to about 80% for traffic with short burst repetition periods. The traffic shaping techniques and analytical results described herein can be employed in the traffic management of future B-ISDN/ATM networks.

  • A 1-K ECL Gate Array Implemented with Fully Self-Aligned AlGaAs/GaAs Heterojunction Bipolar Transistors

    Nobuyuki HAYAMA  Yuzuru TOMONOH  Hideki TAKAHASHI  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1121-1126

    The paper describes the design considerations, fabrication process and performance of the newly developed 1-K ECL gate array implemented with fully self-aligned AlGaAs/GaAs hoterojunction bipolar transistors (HBTs). This gate array consists of 960 three-input OR/NOR ECL basic gates. It contains about 7,600 transistors in a chip area 8.15-mm8.45-mm. The basic (FI=FO=1, wiring length L=0-mm) and loaded (FI=FO=3, L=1-mm) gates exhibit delay times of 33-ps and 82-ps, respectively, with 8.5-mW/gate power dissipation. From the measured values, fan-in, fan-out and wiring delay times of 9-ps/FI, 7-ps/FO and 17-ps/mm are estimated, respectively. These results are in good agreement with the designed results obtained using "SPICE" simulation.

  • An Application of Air-Bridge Metal Interconnections to High Speed GaAs LSI's

    Minoru NODA  Hiroshi MATSUOKA  Norio HIGASHISAKA  Masaaki SHIMADA  Hiroshi MAKINO  Shuichi MATSUE  Yasuo MITSUI  Kazuo NISHITANI  Akiharu TADA  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1146-1153

    Air-bridge metal interconnection technology is used for upper level power supply line interconnections in GaAs LSI's to reduce the signal propagation delay time. This technology reduces both parasitic capacitance between the signal line and the power supply line, and propagation delay in the signal line to about 10% and about 50%, respectively, compared to conventional 3-level interconnections without air-bridges. Under standard load conditions (FI=FO=2, length of load line=2 mm), the air-bridge technique leads to gate propagation delays which are about 60% of those in conventional interconnections. We fabricated 2.1-k gate Gate Arrays and 4-kb SRAM's using the air-bridge structure to interconnect power supply lines. For a Gate Array with 0.7 µm gate Buried P-layer Lightly Doped Drain (BPLDD) FET's, the typical gate propagation delay under standard load conditions was about 110 ps with a dissipation power of 1.4 mW/gate. SRAM's with 05 µm gate BPLDD's had typical access time (tacc) of 1.5 ns with a dissipation power of 700 mW/chip.

  • Computer-Aided Analysis of GaAs MESFETs with p-Buffer Layer on the Semi-Insulating Substrate

    Kazushige HORIO  Naohisa OKUMURA  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1140-1145

    GaAs MESFETs with a p-buffer layer (or a buried p-layer) are important devices for high-speed GaAs ICs. To study what conditions are required as a good substrate for ICs, we have investigated, by two-dimensional simulation, small-signal parameters and drain-current transients of GaAs MESFETs with a p-buffer layer on the semi-insulating substrate. It is shown that the introduction of a p-buffer layer is effective to improve the transconductance and the cuttoff frequeycy. These parameters are not degrade even if the p-layer doping is increased and a neurtral p-region exists. It is also shown that drain-current drifts and hysteresis in I-V curves can occur in a case with a p-buffer layer, too. It is concluded that the introduction of a relatively highly-doped p-layer on a substrate with low acceptor and electron trap (EL2) densities is effective to realize the stable and high performance of GaAs MESFETs.

8141-8160hit(8249hit)