Kensei ITAYA Ryosuke OZAKI Tsuneki YAMASAKI
In this paper, we propose the transient analysis technique to analyze the multilayered dispersive media by using a combination of fast inversion Laplace transform (FILT) and the continued fraction expanded methods. Numerical results are given by the reflection response, inside-time response waveforms, and electric field distributions of the reflection component. Further, we verify the calculation accuracy of FILT method for the two types using a convergence test.
Yun WU ZiHao CHEN MengYao LI Han HAI
Intelligent reflecting surface (IRS) is an effective technology to improve the energy and spectral efficiency of wireless powered communication network (WPCN). Under user cooperation, we propose an IRS-assisted WPCN system where the wireless devices (WDs) collect wireless energy in the downlink (DL) and then share data. The adjacent single-antenna WDs cooperate to form a virtual antenna array so that their information can be simultaneously transmitted to the multi-antenna common hybrid access point (HAP) through the uplink (UL) using multiple-input multiple-output (MIMO) technology. By jointly optimizing the passive beamforming at the IRS, the active beamforming in the DL and the UL, the energy consumed by data sharing, and the time allocation of each phase, we formulate an UL throughput maximization problem. However, this optimization problem is non-convex since the optimization variables are highly coupled. In this study, we apply the alternating optimization (AO) technology to decouple the optimization variables and propose an efficient algorithm to avoid the difficulty of directly solving the problem. Numerical results indicate that the joint optimization method significantly improves the UL throughput performance in multi-user WPCN compared with various baseline methods.
Jun SAITO Nobuhide NONAKA Kenichi HIGUCHI
We propose a novel peak-to-average power ratio (PAPR) reduction method based on a peak cancellation (PC) signal vector that considers the variance in the average signal power among transmitter antennas for massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) signals using the null space in a MIMO channel. First, we discuss the conditions under which the PC signal vector achieves a sufficient PAPR reduction effect after its projection onto the null space of the MIMO channel. The discussion reveals that the magnitude of the correlation between the PC signal vector before projection and the transmission signal vector should be as low as possible. Based on this observation and the fact that to reduce the PAPR it is helpful to suppress the variation in the transmission signal power among antennas, which may be enhanced by beamforming (BF), we propose a novel method for generating a PC signal vector. The proposed PC signal vector is designed so that the signal power levels of all the transmitter antennas are limited to be between the maximum and minimum power threshold levels at the target timing. The newly introduced feature in the proposed method, i.e., increasing the signal power to be above the minimum power threshold, contributes to suppressing the transmission signal power variance among antennas and to improving the PAPR reduction capability after projecting the PC signal onto the null space in the MIMO channel. This is because the proposed method decreases the magnitude of the correlation between the PC signal vectors before its projection and the transmission signal vectors. Based on computer simulation results, we show that the PAPR reduction performance of the proposed method is improved compared to that for the conventional method and the proposed method reduces the computational complexity compared to that for the conventional method for achieving the same target PAPR.
Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.
Shi BAO Xiaoyan SONG Xufei ZHUANG Min LU Gao LE
Images with rich color information are an important source of information that people obtain from the objective world. Occasionally, it is difficult for people with red-green color vision deficiencies to obtain color information from color images. We propose a method of color correction for dichromats based on the physiological characteristics of dichromats, considering hue information. First, the hue loss of color pairs under normal color vision was defined, an objective function was constructed on its basis, and the resultant image was obtained by minimizing it. Finally, the effectiveness of the proposed method is verified through comparison tests. Red-green color vision deficient people fail to distinguish between partial red and green colors. When the red and green connecting lines are parallel to the a* axis of CIE L*a*b*, red and green perception defectives cannot distinguish the color pair, but can distinguish the color pair parallel to the b* axis. Therefore, when two colors are parallel to the a* axis, their color correction yields good results. When color correction is performed on a color, the hue loss between the two colors under normal color vision is supplemented with b* so that red-green color vision-deficient individuals can distinguish the color difference between the color pairs. The magnitude of the correction is greatest when the connecting lines of the color pairs are parallel to the a* axis, and no color correction is applied when the connecting lines are parallel to the b* axis. The objective evaluation results show that the method achieves a higher score, indicating that the proposed method can maintain the naturalness of the image while reducing confusing colors.
We propose a pre-T event-triggered controller (ETC) for the stabilization of a chain of integrators. Our per-T event-triggered controller is a modified event-triggered controller by adding a pre-defined positive constant T to the event-triggering condition. With this pre-T, the immediate advantages are (i) the often complicated additional analysis regarding the Zeno behavior is no longer needed, (ii) the positive lower bound of interexecution times can be specified, (iii) the number of control input updates can be further reduced. We carry out the rigorous system analysis and simulations to illustrate the advantages of our proposed method over the traditional event-triggered control method.
Chen ZHONG Chegnyu WU Xiangyang LI Ao ZHAN Zhengqiang WANG
A novel temporal convolution network-gated recurrent unit (NTCN-GRU) algorithm is proposed for the greatest of constant false alarm rate (GO-CFAR) frequency hopping (FH) prediction, integrating GRU and Bayesian optimization (BO). GRU efficiently captures the semantic associations among long FH sequences, and mitigates the phenomenon of gradient vanishing or explosion. BO improves extracting data features by optimizing hyperparameters besides. Simulations demonstrate that the proposed algorithm effectively reduces the loss in the training process, greatly improves the FH prediction effect, and outperforms the existing FH sequence prediction model. The model runtime is also reduced by three-quarters compared with others FH sequence prediction models.
Yuguang ZHANG Zhiyong ZHANG Wei ZHANG Deming MAO Zhihong RAO
Using a limited number of probes has always been a focus in interface-level network topology probing to discover complete network topologies. Stop-set-based network topology probing methods significantly reduce the number of probes sent but suffer from the side effect of incomplete topology information discovery. This study proposes an optimized probing method based on stop probabilities (SPs) that builds on existing stop-set-based network topology discovery methods to address the issue of incomplete topology information owing to multipath routing. The statistics of repeat nodes (RNs) and multipath routing on the Internet are analyzed and combined with the principles of stop-set-based probing methods, highlighting that stopping probing at the first RN compromises the completeness of topology discovery. To address this issue, SPs are introduced to adjust the stopping strategy upon encountering RNs during probing. A method is designed for generating SPs that achieves high completeness and low cost based on the distribution of the number of RNs. Simulation experiments demonstrate that the proposed stop-probability-based probing method almost completely discovers network nodes and links across different regions and times over a two-year period, while significantly reducing probing redundancy. In addition, the proposed approach balances and optimizes the trade-off between complete topology discovery and reduced probing costs compared with existing topology probing methods. Building on this, the factors influencing the probing cost of the proposed method and methods to further reduce the number of probes while ensuring completeness are analyzed. The proposed method yields universally applicable SPs in the current Internet environment.
Koji ABE Mikiya KUZUTANI Satoki FURUYA Jose A. PIEDRA-LORENZANA Takeshi HIZAWA Yasuhiko ISHIKAWA
A reduced dark leakage current, without degrading the near-infrared responsivity, is reported for a vertical pin structure of Ge photodiodes (PDs) on n+-Si substrate, which usually shows a leakage current higher than PDs on p+-Si. The peripheral/surface leakage, the dominant leakage in PDs on n+-Si, is significantly suppressed by globally implanting P+ in the i-Si cap layer protecting the fragile surface of i-Ge epitaxial layer before locally implanting B+/BF2+ for the top p+ region of the pin junction. The P+ implantation compensates free holes unintentionally induced due to the Fermi level pinning at the surface/interface of Ge. By preventing the hole conduction from the periphery to the top p+ region under a negative/reverse bias, a reduction in the leakage current of PDs on n+-Si is realized.
Zhibo CAO Pengfei HAN Hongming LYU
This paper introduces a computer-aided low-power design method for tapered buffers that address given load capacitances, output transition times, and source impedances. Cross-voltage-domain tapered buffers involving a low-voltage domain in the frontier stages and a high-voltage domain in the posterior stages are further discussed which breaks the trade-off between the energy dissipation and the driving capability in conventional designs. As an essential circuit block, a dedicated analytical model for the level-shifter is proposed. The energy-optimized tapered buffer design is verified for different source and load conditions in a 180-nm CMOS process. The single-VDD buffer model achieves an average inaccuracy of 8.65% on the transition loss compared with Spice simulation results. Cross-voltage tapered buffers can be optimized to further remarkably reduce the energy consumption. The study finds wide applications in energy-efficient switching-mode analog applications.
Hongbo LI Aijun LIU Qiang YANG Zhe LYU Di YAO
To improve the direction-of-arrival estimation performance of the small-aperture array, we propose a source localization method inspired by the Ormia fly’s coupled ears and MUSIC-like algorithm. The Ormia can local its host cricket’s sound precisely despite the tremendous incompatibility between the spacing of its ear and the sound wavelength. In this paper, we first implement a biologically inspired coupled system based on the coupled model of the Ormia’s ears and solve its responses by the modal decomposition method. Then, we analyze the effect of the system on the received signals of the array. Research shows that the system amplifies the amplitude ratio and phase difference between the signals, equivalent to creating a virtual array with a larger aperture. Finally, we apply the MUSIC-like algorithm for DOA estimation to suppress the colored noise caused by the system. Numerical results demonstrate that the proposed method can improve the localization precision and resolution of the array.
We propose a zero-order-hold triggered control for a chain of integrators with an arbitrary sampling period. We analytically show that our control scheme globally asymptotically stabilizes the considered system. The key feature is that the pre-specified sampling period can be enlarged as desired by adjusting a gain-scaling factor. An example with various simulation results is given for clear illustration.
Taisei SAITO Kota ANDO Tetsuya ASAI
Neural networks (NNs) fail to perform well or make excessive predictions when predicting out-of-distribution or unseen datasets. In contrast, Bayesian neural networks (BNNs) can quantify the uncertainty of their inference to solve this problem. Nevertheless, BNNs have not been widely adopted owing to their increased memory and computational cost. In this study, we propose a novel approach to extend binary neural networks by introducing a probabilistic interpretation of binary weights, effectively converting them into BNNs. The proposed approach can reduce the number of weights by half compared to the conventional method. A comprehensive comparative analysis with established methods like Monte Carlo dropout and Bayes by backprop was performed to assess the performance and capabilities of our proposed technique in terms of accuracy and capturing uncertainty. Through this analysis, we aim to provide insights into the advantages of this Bayesian extension.
Hyebong CHOI Joel SHIN Jeongho KIM Samuel YOON Hyeonmin PARK Hyejin CHO Jiyoung JUNG
The design of automobile lamps requires accurate estimation of heat distribution to prevent overheating and deformation of the product. Traditional heat resistant analysis using Computational Fluid Dynamics (CFD) is time-consuming and requires expertise in thermofluid mechanics, making real-time temperature analysis less accessible to lamp designers. We propose a machine learning-based temperature prediction system for automobile lamp design. We trained our machine learning models using CFD results of various lamp designs, providing lamp designers real-time Heat-Resistant Analysis. Comprehensive tests on real lamp products demonstrate that our prediction model accurately estimates heat distribution comparable to CFD analysis within a minute. Our system visualizes the estimated heat distribution of car lamp design supporting quick decision-making by lamp designer. It is expected to shorten the product design process, improving the market competitiveness.
Xiao’an BAO Shifan ZHOU Biao WU Xiaomei TU Yuting JIN Qingqi ZHANG Na ZHANG
With the popularization of software defined networks, switch migration as an important network management strategy has attracted increasing attention. Most existing switch migration strategies only consider local conditions and simple load thresholds, without fully considering the overall optimization and dynamics of the network. Therefore, this article proposes a switch migration algorithm based on global optimization. This algorithm adds a load prediction module to the migration model, determines the migration controller, and uses an improved whale optimization algorithm to determine the target controller and its surrounding controller set. Based on the load status of the controller and the traffic priority of the switch to be migrated, the optimal migration switch set is determined. The experimental results show that compared to existing schemes, the algorithm proposed in this paper improves the average flow processing efficiency by 15% to 40%, reduces switch migration times, and enhances the security of the controller.
Dongzhu LI Zhijie ZHAN Rei SUMIKAWA Mototsugu HAMADA Atsutake KOSUGE Tadahiro KURODA
A 0.13mJ/prediction with 68.6% accuracy wired-logic deep neural network (DNN) processor is developed in a single 16-nm field-programmable gate array (FPGA) chip. Compared with conventional von-Neumann architecture DNN processors, the energy efficiency is greatly improved by eliminating DRAM/BRAM access. A technical challenge for conventional wired-logic processors is the large amount of hardware resources required for implementing large-scale neural networks. To implement a large-scale convolutional neural network (CNN) into a single FPGA chip, two technologies are introduced: (1) a sparse neural network known as a non-linear neural network (NNN), and (2) a newly developed raster-scan wired-logic architecture. Furthermore, a novel high-level synthesis (HLS) technique for wired-logic processor is proposed. The proposed HLS technique enables the automatic generation of two key components: (1) Verilog-hardware description language (HDL) code for a raster-scan-based wired-logic processor and (2) test bench code for conducting equivalence checking. The automated process significantly mitigates the time and effort required for implementation and debugging. Compared with the state-of-the-art FPGA-based processor, 238 times better energy efficiency is achieved with only a slight decrease in accuracy on the CIFAR-100 task. In addition, 7 times better energy efficiency is achieved compared with the state-of-the-art network-optimized application-specific integrated circuit (ASIC).
Haochen LYU Jianjun LI Yin YE Chin-Chen CHANG
The purpose of Facial Beauty Prediction (FBP) is to automatically assess facial attractiveness based on human aesthetics. Most neural network-based prediction methods do not consider the ranking information in the task. For scoring tasks like facial beauty prediction, there is abundant ranking information both between images and within images. Reasonable utilization of these information during training can greatly improve the performance of the model. In this paper, we propose a novel end-to-end Convolutional Neural Network (CNN) model based on ranking information of images, incorporating a Rank Module and an Adaptive Weight Module. We also design pairwise ranking loss functions to fully leverage the ranking information of images. Considering training efficiency and model inference capability, we choose ResNet-50 as the backbone network. We conduct experiments on the SCUT-FBP5500 dataset and the results show that our model achieves a new state-of-the-art performance. Furthermore, ablation experiments show that our approach greatly contributes to improving the model performance. Finally, the Rank Module with the corresponding ranking loss is plug-and-play and can be extended to any CNN model and any task with ranking information. Code is available at https://github.com/nehcoah/Rank-Info-Net.
Daichi ISHIKAWA Naoki HAYASHI Shigemasa TAKAI
In this paper, we consider a distributed stochastic nonconvex optimization problem for multiagent systems. We propose a distributed stochastic gradient-tracking method with event-triggered communication. A group of agents cooperatively finds a critical point of the sum of local cost functions, which are smooth but not necessarily convex. We show that the proposed algorithm achieves a sublinear convergence rate by appropriately tuning the step size and the trigger threshold. Moreover, we show that agents can effectively solve a nonconvex optimization problem by the proposed event-triggered algorithm with less communication than by the existing time-triggered gradient-tracking algorithm. We confirm the validity of the proposed method by numerical experiments.
Koichi KITAMURA Koichi KOBAYASHI Yuh YAMASHITA
In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.
Takumasa ISHIOKA Tatsuya FUKUI Toshihito FUJIWARA Satoshi NARIKAWA Takuya FUJIHASHI Shunsuke SARUWATARI Takashi WATANABE
Cloud gaming systems allow users to play games that require high-performance computational capability on their mobile devices at any location. However, playing games through cloud gaming systems increases the Round-Trip Time (RTT) due to increased network delay. To simulate a local gaming experience for cloud users, we must minimize RTTs, which include network delays. The speculative video transmission pre-generates and encodes video frames corresponding to all possible user inputs and sends them to the user before the user’s input. The speculative video transmission mitigates the network, whereas a simple solution significantly increases the video traffic. This paper proposes tile-wise delta detection for traffic reduction of speculative video transmission. More specifically, the proposed method determines a reference video frame from the generated video frames and divides the reference video frame into multiple tiles. We calculate the similarity between each tile of the reference video frame and other video frames based on a hash function. Based on calculated similarity, we determine redundant tiles and do not transmit them to reduce traffic volume in minimal processing time without implementing a high compression ratio video compression technique. Evaluations using commercial games showed that the proposed method reduced 40-50% in traffic volume when the SSIM index was around 0.98 in certain genres, compared with the speculative video transmission method. Furthermore, to evaluate the feasibility of the proposed method, we investigated the effectiveness of network delay reduction with existing computational capability and the requirements in the future. As a result, we found that the proposed scheme may mitigate network delay by one to two frames, even with existing computational capability under limited conditions.