The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] REM(1013hit)

1-20hit(1013hit)

  • Double Step Technique for Accurate Microwave High Attenuation Measurements Open Access

    Anton WIDARTA  

     
    PAPER

      Pubricized:
    2024/06/11
      Vol:
    E107-C No:10
      Page(s):
    349-354

    A double step attenuation measurement technique using a non-isolating gauge block attenuator (GBA) has been proposed for accurate measurements of radio frequency and microwave high attenuation. For fixed attenuator as a device under test (DUT), a medium value (≤ 60 dB) attenuator is used as the GBA which connected directly between the test ports, then high attenuation of the DUT is measured in two setups as follows. 1) Thru and GBA with normal power level and 2) GBA and DUT with higher power level. This approach removes the need to isolate the GBA, therefore, accurate measurements of high attenuation can be obtained simply over a broad frequency range. For variable or step attenuator as a DUT, one of the attenuation sections of the DUT is applied as the GBA. Detailed analyses and those verification measurements are carried out both for fixed attenuator, as well as for variable attenuator and show good agreement.

  • A Two-Phase Algorithm for Reliable and Energy-Efficient Heterogeneous Embedded Systems Open Access

    Hongzhi XU  Binlian ZHANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/27
      Vol:
    E107-D No:10
      Page(s):
    1285-1296

    Reliability is an important figure of merit of the system and it must be satisfied in safety-critical applications. This paper considers parallel applications on heterogeneous embedded systems and proposes a two-phase algorithm framework to minimize energy consumption for satisfying applications’ reliability requirement. The first phase is for initial assignment and the second phase is for either satisfying the reliability requirement or improving energy efficiency. Specifically, when the application’s reliability requirement cannot be achieved via the initial assignment, an algorithm for enhancing the reliability of tasks is designed to satisfy the application’s reliability requirement. Considering that the reliability of initial assignment may exceed the application’s reliability requirement, an algorithm for reducing the execution frequency of tasks is designed to improve energy efficiency. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume less energy while satisfying the application’s reliability requirements.

  • Evaluating Introduction of Systems by Goal Dependency Modeling Open Access

    Haruhiko KAIYA  Shinpei OGATA  Shinpei HAYASHI  

     
    PAPER-Software Engineering

      Pubricized:
    2024/06/11
      Vol:
    E107-D No:10
      Page(s):
    1297-1311

    Before introducing systems to an activity in a business or in daily life, the effects of these systems should first be carefully examined by analysts. Thus, methods for examining such effects are required at the early stage of requirements analysis. In this study, we propose and evaluate an analysis method using a modeling notation for this purpose, called goal dependency modeling and analysis (GDMA). In an activity, an actor, such as a person or a system, expects a goal to be achieved. The actor or another actor will achieve this goal. We focus herein on such a goal and the two different roles played by the actors. In GDMA, the dependencies in the roles of the two actors about a goal are mainly represented. GDMA enables analysts to observe the change of actors, their expectations, and abilities by using metrics. Each metric is defined on the basis of the GDMA meta-model. Therefore, GDMA enables them to decide whether the change is good or bad both quantitatively and qualitatively for the people. We evaluate GDMA by describing models of the actual system introduction written in the literatures and explain the effects caused by this introduction. In addition, CASE tools are crucial in efficiently and accurately performing GDMA. Hence, we develop its tools by extending an existing UML modeling tool.

  • Remote Sensing Image Dehazing Using Multi-Scale Gated Attention for Flight Simulator Open Access

    Qi LIU  Bo WANG  Shihan TAN  Shurong ZOU  Wenyi GE  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:9
      Page(s):
    1206-1218

    For flight simulators, it is crucial to create three-dimensional terrain using clear remote sensing images. However, due to haze and other contributing variables, the obtained remote sensing images typically have low contrast and blurry features. In order to build a flight simulator visual system, we propose a deep learning-based dehaze model for remote sensing images dehazing. An encoder-decoder architecture is proposed that consists of a multiscale fusion module and a gated large kernel convolutional attention module. This architecture can fuse multi-resolution global and local semantic features and can adaptively extract image features under complex terrain. The experimental results demonstrate that, with good generality and application, the model outperforms existing comparison techniques and achieves high-confidence dehazing in remote sensing images with a variety of haze concentrations, multi-complex terrains, and multi-spatial resolutions.

  • Video Reflection Removal by Modified EDVR and 3D Convolution Open Access

    Sota MORIYAMA  Koichi ICHIGE  Yuichi HORI  Masayuki TACHI  

     
    LETTER-Image

      Pubricized:
    2023/12/11
      Vol:
    E107-A No:8
      Page(s):
    1430-1434

    In this paper, we propose a method for video reflection removal using a video restoration framework with enhanced deformable networks (EDVR). We examine the effect of each module in EDVR on video reflection removal and modify the models using 3D convolutions. The performance of each modified model is evaluated in terms of the RMSE between the structural similarity (SSIM) and the smoothed SSIM representing temporal consistency.

  • Artifact Removal Using Attention Guided Local-Global Dual-Stream Network for Sparse-View CT Reconstruction Open Access

    Chang SUN  Yitong LIU  Hongwen YANG  

     
    LETTER-Biological Engineering

      Pubricized:
    2024/03/29
      Vol:
    E107-D No:8
      Page(s):
    1105-1109

    Sparse-view CT reconstruction has gained significant attention due to the growing concerns about radiation safety. Although recent deep learning-based image domain reconstruction methods have achieved encouraging performance over iterative methods, effectively capturing intricate details and organ structures while suppressing noise remains challenging. This study presents a novel dual-stream encoder-decoder-based reconstruction network that combines global path reconstruction from the entire image with local path reconstruction from image patches. These two branches interact through an attention module, which enhances visual quality and preserves image details by learning correlations between image features and patch features. Visual and numerical results show that the proposed method has superior reconstruction capabilities to state-of-the-art 180-, 90-, and 45-view CT reconstruction methods.

  • Simulation of Scalar-Mode Optically Pumped Magnetometers to Search Optimal Operating Conditions Open Access

    Yosuke ITO  Tatsuya GOTO  Takuma HORI  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    164-170

    In recent years, measuring biomagnetic fields in the Earth’s field by differential measurements of scalar-mode OPMs have been actively attempted. In this study, the sensitivity of the scalar-mode OPMs under the geomagnetic environment in the laboratory was studied by numerical simulation. Although the noise level of the scalar-mode OPM in the laboratory environment was calculated to be 104 pT/$\sqrt{\mathrm{Hz}}$, the noise levels using the first-order and the second-order differential configurations were found to be 529 fT/cm/$\sqrt{\mathrm{Hz}}$ and 17.2 fT/cm2/$\sqrt{\mathrm{Hz}}$, respectively. This result indicated that scalar-mode OPMs can measure very weak magnetic fields such as MEG without high-performance magnetic shield roomns. We also studied the operating conditions by varying repetition frequency and temperature. We found that scalar-mode OPMs have an upper limit of repetition frequency and temperature, and that the repetition frequency should be set below 4 kHz and the temperature should be set below 120°C.

  • Finformer: Fast Incremental and General Time Series Data Prediction Open Access

    Savong BOU  Toshiyuki AMAGASA  Hiroyuki KITAGAWA  

     
    PAPER

      Pubricized:
    2024/01/09
      Vol:
    E107-D No:5
      Page(s):
    625-637

    Forecasting time-series data is useful in many fields, such as stock price predicting system, autonomous driving system, weather forecast, etc. Many existing forecasting models tend to work well when forecasting short-sequence time series. However, when working with long sequence time series, the performance suffers significantly. Recently, there has been more intense research in this direction, and Informer is currently the most efficient predicting model. Informer’s main drawback is that it does not allow for incremental learning. In this paper, we propose a Fast Informer called Finformer, which addresses the above bottleneck by reducing the training/predicting time of Informer. Finformer can efficiently compute the positional/temporal/value embedding and Query/Key/Value of the self-attention incrementally. Theoretically, Finformer can improve the speed of both training and predicting over the state-of-the-art model Informer. Extensive experiments show that Finformer is about 26% faster than Informer for both short and long sequence time series prediction. In addition, Finformer is about 20% faster than InTrans for the general Conv1d, which is one of our previous works and is the predecessor of Finformer.

  • Technology Remapping Approach Using Multi-Gate Reconfigurable Cells for Post-Mask Functional ECO

    Tomohiro NISHIGUCHI  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/10/10
      Vol:
    E107-A No:3
      Page(s):
    592-599

    This paper proposes multi-gate reconfigurable (RECON) cells and a technology remapping approach using them as spare cells for post-mask functional engineering change orders (ECOs). With the rapid increase in circuit complexity, ECOs often occur in the post-mask stage of LSI designs. To deal with post-mask ECOs at a low cost, only the metal layers are redesigned by making functional changes using spare cells. For this purpose, 2T/4T/6T-RECON cells were proposed as reconfigurable spare cells. However, conventional RECON cells are used to implement single functions, which may result in unused transistors in the cells. In addition, the number of 2T/4T/6T-RECON spare cells used for post-mask ECOs varies greatly depending on the circuit to be implemented and the type of ECO that occurs. Therefore, functional ECOs may fail due to a lack of certain types of RECON cells, even if other types of RECON cells remain. To solve this problem, we propose multi-gate RECON cells that implement multiple functions in a single RECON cell while retaining the layouts of conventional 4T/6T-RECON base cells, and a technology remapping approach using them. The proposed approach not only reduces the number of used spare cells for modifications but also allows the flexible use of spare cells to fix them with less increase in wire length and delay. Experimental results have confirmed that the functional ECO success ratio is increased by 4.8pt on average and the total number of used spare cells is reduced by 5.6% on average. It has also been confirmed that the increase in wire length is reduced by 17.4% on average and the decrease in slack is suppressed by 21.6% on average.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • Non-Contact PIM Measurement Method Using Balanced Transmission Lines for Impedance Matched PIM Measurement Systems

    Ryunosuke MUROFUSHI  Nobuhiro KUGA  Eiji HANAYAMA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E106-B No:12
      Page(s):
    1329-1336

    In this paper, a concept of non-contact PIM evaluation method using balanced transmission lines is proposed for impedance-matched PIM measurement systems. In order to evaluate the PIM characteristics of a MSL by using its image model, measurement system using balanced transmission line is introduced. In non-contact PIM measurement, to reduce undesirable PIM generation by metallic contact and the PIM-degradation in repeated measurements, a non-contact connector which is applicable without any design changes in DUT is introduce. The three-dimensional balun composed of U-balun and balanced transmission line is also proposed so that it can be applicable to conventional unbalanced PIM measurement systems. In order to validate the concept of the proposed system, a sample using nickel producing high PIM is introduced. In order to avoid the effect of the non-contact connection part on observed PIM, a sample-configuration that PIM-source exists outside of the non-contact connection part is introduced. It is also shown using a sample using copper that, nickel-sample can be clearly differentiated in PIM characteristics while it is equivalent to low-PIM sample in scattering-parameter characteristics. Finally, by introducing the TRL-calibration and by extracting inherent DUT-characteristics from whole-system characteristics, a method to estimate the PIM characteristics of DUT which cannot be taken directly in measurement is proposed.

  • Effect of Return Current Cable in Three Different Calibration Environments on Ringing Damped Oscillations of Contact Discharge Current Waveform from ESD Generator

    Yukihiro TOZAWA  Takeshi ISHIDA  Jiaqing WANG  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/09/06
      Vol:
    E106-B No:12
      Page(s):
    1455-1462

    Measurements of contact discharge current waveforms from an ESD generator with a test voltage of 4kV are conducted with the IEC specified arrangement of a 2m long return current cable in different three calibration environments that all comply with the IEC calibration standard to identify the occurrence source of damped oscillations (ringing), which has remained unclear since contact discharge testing was first adopted in 1989 IEC publication 801-2. Their frequency spectra are analyzed comparing with the spectrum calculated from the ideal contact discharge current waveform without ringing (IEC specified waveform) offered in IEC 61000-4-2 and the spectra derived from a simplified equivalent circuit based on the IEC standard in combination with the measured input impedances of one-ended grounding return current cable with the same arrangement in the same calibration environment as those for the current measurements. The results show that the measured contact discharge waveforms have ringing around the IEC specified waveform after the falling edge of the peak, causing their spectra from 20MHz to 200MHz, but the spectra from 40MHz to 200MHz significantly differ depending on the calibration environments even for the same cable arrangement, which do not almost affect the spectra from 20MHz to 40MHz and over 200MHz. In the calibration environment under the cable arrangement close to the reference ground, the spectral shapes of the measured contact discharge currents and their frequencies of the multiple peaks and dips roughly correspond to the spectral distributions calculated from the simplified equivalent circuit using the measured cable input impedances. These findings reveal that the root cause of ringing is mainly due to the resonances of the return current cable, and calibration environment under the cable arrangement away from the reference ground tends to mitigate the cable resonances.

  • A Study on Evaluation Method for Beam Profile of Phased Array by Using Two-Dimensional Measurement Equipment Open Access

    Kazuki YUKAWA  Takayuki MATSUMURO  Toshio ISHIZAKI  Yohei ISHIKAWA  

     
    INVITED PAPER

      Pubricized:
    2023/05/31
      Vol:
    E106-C No:11
      Page(s):
    643-650

    Recently, “Both-Side Retrodirective System” was proposed, as a beam convergence technique, for microwave high power transmission. To demonstrate the effectiveness of the both-side retrodirective system by experiment, the authors propose a 2-dimensional measurement equipment. Propagation in the parallel plate waveguide was analogized based on free-space propagation, and the theory and characteristics were clarified by simulation. The electric field distribution in the waveguide was measured by electric probe with the proposed equipment. Two types of measurement equipment were developed. One is a 4-element experiment system, which is a small-scale device for principle verification. The other is a 16-element measurement equipment, which is intended to evaluate beam convergence of a both-side retrodirective system in the next step. The measured results were compared with simulation results. As a result, it was confirmed that the beam formed in the waveguide was successfully measured. Thus, the effectiveness of 2-dimensional measurement equipment for evaluation of beam convergence was shown.

  • A Low-Phase-Noise RF Up/Down-Converter for Cost-Effective 5G Millimeter-Wave Test Solutions

    Jaeyong KO  Namkyoung KIM  Kyungho YOO  Tongho CHUNG  

     
    BRIEF PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    713-717

    The increasing demand for millimeter-wave (mmWave) frequencies with wider signal bandwidths, such as 5G NR, requires large investments on test equipment. This work presents a 5G mmWave up/down-converter with a 40 GHz LO, fabricated in custom PCBs with off-the-shelf components. The mmWave converter has broad IF and RF bandwidths of 1∼5 GHz and 21∼45 GHz, and the built-in LO generates 20∼29.5 GHz and 33.5∼40 GHz of output. To achieve high linearity of the converter simultaneously, the LO must produce low-phase-noise and be capable of high harmonics/spur rejection, and design techniques related to these features are demonstrated. Additionally, a reconfigurable IF amplifier for bi-directional conversion is included and demonstrates low gain variation to maintain the linearity of the wideband modulation signals. The final designed converter is tested with 5G OFDM 64-QAM 100 MHz 1-CC (4-CC) signals and shows RF/IF output power of -3/8 dBm with a linear range of 35 (30)/38 (33) dB at an EVM of 25 dB.

  • A Cause of Momentary Level Shifts Appearing in Broadcast Satellite Signals Open Access

    Ryouichi NISHIMURA  Byeongpyo JEONG  Hajime SUSUKITA  Takashi TAKAHASHI  Kenichi TAKIZAWA  

     
    PAPER-Sensing

      Pubricized:
    2023/02/24
      Vol:
    E106-B No:8
      Page(s):
    714-722

    The degree of reception of BS signals is affected by various factors. After routinely recording it at two observation points at two locations, we found that momentary upward and downward level shifts occurred multiple times, mainly during daytime. These level shifts were observed at one location. No such signal was sensed at the other location. After producing an algorithm to extract such momemtary level shifts, their statistical properties were investigated. Careful analyses, including assessment of the signal polarity, amplitude, duration, hours, and comparison with actual flight schedules and route information implied that these level shifts are attributable to the interference of direct and reflected waves from aircraft flying at approximately tropopause altitude. This assumption is further validated through computer simulations of BS signal interference.

  • Ultrasonic Measurement of the Thin Oil-Slick Thickness Based on the Compressed Sensing Method

    Di YAO  Qifeng ZHANG  Qiyan TIAN  Hualong DU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/01/17
      Vol:
    E106-A No:7
      Page(s):
    998-1001

    A super-resolution algorithm is proposed to solve the problem of measuring the thin thickness of oil slick using compressed sensing theory. First, a mathematical model of a single pulse underwater ultrasonic echo is established. Then, the estimation model of the transmit time of flight (TOF) of ultrasonic echo within oil slick is given based on the sparsity of echo signals. At last, the super-resolution TOF value can be obtained by solving the sparse convex optimization problem. Simulations and experiments are conducted to validate the performance of the proposed method.

  • Adaptive Buffering Time Optimization for Path Tracking Control of Unmanned Vehicle by Cloud Server with Digital Twin

    Yudai YOSHIMOTO  Masaki MINAGAWA  Ryohei NAKAMURA  Hisaya HADAMA  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/12/26
      Vol:
    E106-B No:7
      Page(s):
    603-613

    Autonomous driving technology is expected to be applied to various applications with unmanned vehicles (UVs), such as small delivery vehicles for office supplies and smart wheelchairs. UV remote control by a cloud server (CS) would achieve cost-effective applications with a large number of UVs. In general, dead time in real-time feedback control reduces the control accuracy. On remote path tracking control by the CS, UV control accuracy deteriorates due to transmission delay and jitter through the Internet. Digital twin computing (DTC) and jitter buffer are effective to solve this problem. In our previous study, we clarified effectiveness of them in UV remote control by CS. The jitter buffer absorbs the transmission delay jitter of control signals. This is effective to achieve accurate UV remote control. Adaptive buffering time optimization according to real-time transmission characteristics is necessary to achieve more accurate UV control in CS-based remote control system with DTC and jitter buffer. In this study, we proposed a method for the adaptive optimization according to real-time transmission delay characteristics. To quantitatively evaluate the effectiveness of the method, we created a UV remote control simulator of the control system. The results of simulations quantitatively clarify that the adaptive optimization by the proposed method improves the UV control accuracy.

  • Time-Resolved Observation of Organic Light Emitting Diode under Reverse Bias Voltage by Extended Time Domain Reflectometry

    Weisong LIAO  Akira KAINO  Tomoaki MASHIKO  Sou KUROMASA  Masatoshi SAKAI  Kazuhiro KUDO  

     
    BRIEF PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    236-239

    We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.

  • Bearing Remaining Useful Life Prediction Using 2D Attention Residual Network

    Wenrong XIAO  Yong CHEN  Suqin GUO  Kun CHEN  

     
    LETTER-Smart Industry

      Pubricized:
    2022/05/27
      Vol:
    E106-D No:5
      Page(s):
    818-820

    An attention residual network with triple feature as input is proposed to predict the remaining useful life (RUL) of bearings. First, the channel attention and spatial attention are connected in series into the residual connection of the residual neural network to obtain a new attention residual module, so that the newly constructed deep learning network can better pay attention to the weak changes of the bearing state. Secondly, the “triple feature” is used as the input of the attention residual network, so that the deep learning network can better grasp the change trend of bearing running state, and better realize the prediction of the RUL of bearing. Finally, The method is verified by a set of experimental data. The results show the method is simple and effective, has high prediction accuracy, and reduces manual intervention in RUL prediction.

  • Performance Aware Egress Path Discovery for Content Provider with SRv6 Egress Peer Engineering

    Yasunobu TOYOTA  Wataru MISHIMA  Koichiro KANAYA  Osamu NAKAMURA  

     
    PAPER

      Pubricized:
    2023/02/22
      Vol:
    E106-D No:5
      Page(s):
    927-939

    QoS of applications is essential for content providers, and it is required to improve the end-to-end communication quality from a content provider to users. Generally, a content provider's data center network is connected to multiple ASes and has multiple egress paths to reach the content user's network. However, on the Internet, the communication quality of network paths outside of the provider's administrative domain is a black box, so multiple egress paths cannot be quantitatively compared. In addition, it is impossible to determine a unique egress path within a network domain because the parameters that affect the QoS of the content are different for each network. We propose a “Performance Aware Egress Path Discovery” method to improve QoS for content providers. The proposed method uses two techniques: Egress Peer Engineering with Segment Routing over IPv6 and Passive End-to-End Measurement. The method is superior in that it allows various metrics depending on the type of content and can be used for measurements without affecting existing systems. To evaluate our method, we deployed the Performance Aware Egress Path Discovery System in an existing content provider network and conducted experiments to provide production services. Our findings from the experiment show that, in this network, 15.9% of users can expect a 30Mbps throughput improvement, and 13.7% of users can expect a 10ms RTT improvement.

1-20hit(1013hit)