The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

12201-12220hit(16314hit)

  • Internet Traffic Modeling: Markovian Approach to Self-Similar Traffic and Prediction of Loss Probability for Finite Queues

    Shoji KASAHARA  

     
    PAPER-Traffic Measurement and Analysis

      Vol:
    E84-B No:8
      Page(s):
    2134-2141

    It has been reported that IP packet traffic exhibits the self-similar nature and causes the degradation of network performance. Therefore it is crucial for the appropriate buffer design of routers and switches to predict the queueing behavior with self-similar input. It is well known that the fitting methods based on the second-order statistics of counts for the arrival process are not sufficient for predicting the performance of the queueing system with self-similar input. However recent studies have revealed that the loss probability of finite queuing system can be well approximated by the Markovian input models. This paper studies the time-scale impact on the loss probability of MMPP/D/1/K system where the MMPP is generated so as to match the variance of the self-similar process over specified time-scales. We investigate the loss probability in terms of system size, Hurst parameters and time-scales. We also compare the loss probability of resulting MMPP/D/1/K with simulation. Numerical results show that the loss probability of MMPP/D/1/K are not significantly affected by time-scale and that the loss probability is well approximated with resulting MMPP/D/1/K.

  • Power Consumption of Hybrid Circuits of Single-Electron Transistors and Complementary Metal-Oxide-Semiconductor Field-Effect Transistors

    Ken UCHIDA  Junji KOGA  Ryuji OHBA  Akira TORIUMI  

     
    PAPER

      Vol:
    E84-C No:8
      Page(s):
    1066-1070

    The power consumption of hybrid logic circuits of single-electron transistors (SETs) and complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs) was calculated. The SET/CMOS hybrid logic circuits consisted of SET logic trees and CMOS amplifiers, whose inputs were connected to the outputs of the SET logic trees, and it was shown that the reduction of interconnect capacitance between the inputs of CMOS amplifiers and the outputs of SET logic trees was essential to reduce the power consumption. In order to reduce the inter-connect capacitance, a new strategy of constructing logic trees with SETs and their complementary SETs both working as pull-down devices was proposed, for the first time. Consequently, a large amount of the interconnect capacitance could be eliminated and the power consumption of SET/CMOS hybrids was considerably lowered.

  • Memory Access Estimation of Filter Bank Implementation on Different DSP Architectures

    Naoki MIZUTANI  Shogo MURAMATSU  Hisakazu KIKUCHI  

     
    PAPER-Implementations of Signal Processing Systems

      Vol:
    E84-A No:8
      Page(s):
    1951-1959

    A unified polyphase representation of analysis and synthesis filter banks is introduced in this paper, and then the efficient implementation on digital signal processors (DSP) is investigated. Especially, the number of memory accesses, power consumption, processing accuracy and the required instruction cycles are discussed. Firstly, a unified representation is given, and then two types of procedures, SIMO system-based and MISO system-based procedures, are shown, where SIMO and MISO are abbreviations for single-input/multiple-output and multiple-input/single-output, respectively. These procedures are compared to each other. It is shown that the number of data load in SIMO system-based procedure is a half of that in MISO system-based procedure for two-channel filter banks. The implementation of M-channel filter banks is also discussed.

  • Effects of Discrete Quantum Levels on Electron Transport in Silicon Single-Electron Transistors with an Ultra-Small Quantum Dot

    Masumi SAITOH  Toshiro HIRAMOTO  

     
    PAPER

      Vol:
    E84-C No:8
      Page(s):
    1071-1076

    We analyze electron transport of silicon single-electron transistors (Si SETs) with an ultra-small quantum dot using a master-equation model taking into account the discreteness of quantum levels and the finiteness of scattering rates. In the simulated SET characteristics, aperiodic Coulomb blockade oscillations, fine structures and negative differential conductances due to the quantum mechanical effects are superimposed on the usual Coulomb blockade diagram. These features are consistent with the previously measured results. Large peak-to-valley current ratio of negative differential conductances at room temperature is predicted for Si SETs with an ultra-small dot whose size is smaller than 3 nm.

  • Silicon Planar Esaki Diode Operating at Room Temperature

    Junji KOGA  Akira TORIUMI  

     
    PAPER

      Vol:
    E84-C No:8
      Page(s):
    1051-1055

    Negative differential conductance based on lateral interband tunnel effect is demonstrated in a planar degenerate p+-n+ diode (Esaki tunnel diode). The device is fabricated with the current silicon ultralarge scale integration (Si ULSI) process, paying attention to the processing damage so as to reduce an excess tunnel current that flows over some intermediate states in the tunnel junction. I-V characteristics at a low temperature clearly show an intrinsic electron transport, indicating phonon-assisted tunneling in Si as in the case of the previous Esaki diodes fabricated by the alloying method. In addition, a simple circuit function of bistable operation is demonstrated by connecting the planar Esaki diode with conventional Si metal-oxide-semiconductor field effect transistors (MOSFETs). The planar Esaki diode will be a promising device element in the functional library for enhancing the total system performance for the coming system-on-a-chip (SoC) era.

  • Strained-Si-on-Insulator (Strained-SOI) MOSFETs--Concept, Structures and Device Characteristics

    Shin-ichi TAKAGI  Tomohisa MIZUNO  Naoharu SUGIYAMA  Tsutomu TEZUKA  Atsushi KUROBE  

     
    INVITED PAPER

      Vol:
    E84-C No:8
      Page(s):
    1043-1050

    An effective way to realize scaled CMOS with both requirements of high current drive and low supply voltage is to introduce high mobility channel such as strained Si. This paper proposes a new device structure using the strained-Si channel, strained-Si-on-Insulator (strained-SOI) MOSFET, applicable to sub-100 nm Si CMOS technology nodes. The device structure and the advantages of strained-SOI MOSFETs are presented. It is demonstrated that strained-SOI MOSFETs are successfully fabricated by combining SIMOX technology with re-growth of strained Si and that n- and p-MOSFETs have mobility of 1.6 and 1.3 times higher than the universal one, respectively. Furthermore, it is also shown that ultra-thin SiGe-on-Insulator (SGOI) virtual substrates with higher Ge content, necessary to further increase mobility and to realize fully-depleted SOI MOSFETs, can be made by oxidation of SGOI structure with lower Ge content.

  • An Area-Effective Datapath Architecture for Embedded Microprocessors and Scalable Systems

    Toshiaki INOUE  Takashi MANABE  Sunao TORII  Satoshi MATSUSHITA  Masato EDAHIRO  Naoki NISHI  Masakazu YAMASHINA  

     
    INVITED PAPER

      Vol:
    E84-C No:8
      Page(s):
    1014-1020

    We have proposed area-reduction techniques for superscalar datapath architectures with 34 SIMD instructions and have developed an integer-media unit based on these techniques. The unit's design is both functionally asymmetrical and integer-SIMD unified, and the resulting savings in area are 27%-48% as compared to other, functionally equivalent mid-level microprocessor designs, with performance that is, at most, only 7.2% lower. Further, in 2-D IDCT processing, the unit outperforms embedded microprocessor designs without SIMD functions by 49%-118%. Specifically, effective area reduction of adders, shifters, and multiply-and-adders has been achieved by using the unified design. These area-effective techniques are useful for embedded microprocessors and scalable systems that employ highly parallel superscalar and on-chip parallel architectures. The integer-media unit has been implemented in an evaluation chip fabricated with 0.15-µm 5-metal CMOS technology.

  • A New Transformed Input-Domain ANFIS for Highly Nonlinear System Modeling and Prediction

    Elsaid Mohamed ABDELRAHIM  Takashi YAHAGI  

     
    LETTER-Nonlinear Signal Processing

      Vol:
    E84-A No:8
      Page(s):
    1981-1985

    In two- or more-dimensional systems where the components of the sample data are strongly correlated, it is not proper to divide the input space into several subspaces without considering the correlation. In this paper, we propose the usage of the method of principal component in order to uncorrelate and remove any redundancy from the input space of the adaptive neuro-fuzzy inference system (ANFIS). This leads to an effective partition of the input space to the fuzzy model and significantly reduces the modeling error. A computer simulation for two frequently used benchmark problems shows that ANFIS with the uncorrelation process performs better than the original ANFIS under the same conditions.

  • A Measure of Coefficient Quantization Errors for Linear Discrete-Time State-Space Systems

    Shumon SAITO  Masayuki KAWAMATA  

     
    PAPER-Digital Filter

      Vol:
    E84-A No:8
      Page(s):
    1815-1821

    This paper proposes a measure of coefficient quantization errors for linear discrete-time state-space systems. The proposed measure of state-space systems agrees with the actual output error variance since it is derived from the exact evaluation of the output error variance due to coefficient deviation. The measure in this paper is represented by the controllability and the observability gramians and the state covariance matrix of the system. When the variance of coefficient variations is very small, the proposed measure is identical to the conventional statistical sensitivity of state-space systems. This paper also proposes a method of synthesizing minimum measure structures. Numerical examples show that the proposed measure is in very good agreement with the actual output error variance, and that minimum measure structures have a very small degradation of the frequency characteristic due to coefficient quantization.

  • Validation of Rain/No-Rain Discrimination in the Standard TRMM Data Products 1B21 and 1C21

    Yuji OHSAKI  

     
    LETTER-Sensing

      Vol:
    E84-B No:8
      Page(s):
    2321-2325

    The Tropical Rainfall Measuring Mission (TRMM) is a United States-Japan joint project to measure rainfall from space. The first spaceborne rain radar is aboard the TRMM satellite. Rain/no-rain discrimination for the TRMM provides useful information for on-line data processing, storage, and post-processing analysis. In this paper, rain/no-rain discrimination for the TRMM has been validated through simulation and theory for the no-rain condition and by comparison with the ground-based radar data for rain conditions.

  • Designing Multi-Agent Systems Based on Pairwise Agent Interactions

    Takahiro KAWAMURA  Sam JOSEPH  Akihiko OHSUGA  Shinichi HONIDEN  

     
    PAPER

      Vol:
    E84-D No:8
      Page(s):
    968-980

    Systems comprised of multiple interacting mobile agents provide an alternate network computing paradigm that integrates remote data access, message exchange and migration; which up until now have largely been considered independently. On the surface distributed systems design could be helped by a complete specification of the different interaction patterns, however the number of possible designs in any large scale system undergoes a combinatorial explosion. As a consequence this paper focuses on basic one-to-one agent interactions, or paradigms, which can be used as building blocks; allowing larger system characteristics and performance to be understood in terms of their combination. This paper defines three basic agent paradigms and presents associated performance models. The paradigms are evaluated quantitatively in terms of network traffic, overall processing time and size of memory used, in the context of a distributed DB system developed using the Bee-gent Agent Framework. Comparison of the results and models illustrates the performance trade-off for each paradigm, which are not represented in the models, and some implementation issues of agent frameworks. The paper ends with a case study of how to select an appropriate paradigm.

  • An Efficient Large-Signal Modeling Method Using Load-Line Analysis and Its Application to Non-linear Characterization of FET

    Yukio IKEDA  Kazutomi MORI  Masatoshi NAKAYAMA  Yasushi ITOH  Osami ISHIDA  Tadashi TAKAGI  

     
    PAPER-Modeling of Nonlinear Microwave Circuits

      Vol:
    E84-C No:7
      Page(s):
    875-880

    An efficient large-signal modeling method of FET using load-line analysis is proposed, and it is applied to non-linear characterization of FET. In this method, instantaneous drain-source voltage Vds(t) and drain-source current Ids(t) waveforms are determined by load-line analysis while non-linear parameters in a large-signal equivalent circuit of FET are defined as the average values over one period corresponding to instantaneous Vds(t) and Ids(t). Output power (Pout), power added efficiency (ηadd), and phase deviation calculated by using such an equivalent circuit of FET agree well with the measured results at 933.5 MHz. Phase deviation mechanism is explained based on the large-signal equivalent circuit of FET, and it is shown how non-linear parameters, such as trans-conductance (gm), drain-source resistance (Rds), gate-source capacitance (Cgs), and gate leak resistance (Rig) contribute to positive or negative phase deviations. The difference between small-signal and large-signal S-parameters (S11, S12, S21, S22) is also discussed. The proposed large-signal modeling method is considered to be useful for the design of high power, high efficiency, and low distortion amplifiers as well as the investigation of the behavior of FET in large-signal operating conditions.

  • Generalization of MUSIC Using Extended Array Mode Vector for Joint Estimation of Instantaneous DOA and Angular Spread

    Jung-Sik JEONG  Kei SAKAGUCHI  Kiyomichi ARAKI  Jun-ichi TAKADA  

     
    PAPER-Adaptive Algorithms and Experiments

      Vol:
    E84-B No:7
      Page(s):
    1781-1789

    Recently the effect of the angular spread caused by locally scattered signals in the vicinity of the mobile has received considerable attention. This paper proposes the Extended Array Mode Vector (EAMV) which represents the Instantaneous Angular Spread (IAS) as well as the Instantaneous Direction Of Arrival (IDOA) of the received signal at the Base Station (BS). Using the EAMV, MUSIC algorithm is generalized in order that it is possible to estimate both the IDOA and the IAS. In computer simulations, the estimates of the IDOA and the IAS in the fading situation are evaluated. The results show that the estimates for small angular spread agree well with the given values and demonstrate the validity of the proposed approach.

  • Selective Clock Suppression of Protocol Modules for a Low Power Protocol Converter

    Young Moo LEE  Kyu Ho PARK  

     
    LETTER-Computer System Element

      Vol:
    E84-D No:7
      Page(s):
    906-909

    This letter presents a method for reducing power dissipation in a protocol converter. The communication protocol of a VLSI chip hierarchically consists of several sub-protocols and only one of them can be actively working at any given time. In general, protocol converters are implemented by dual protocols of the initially given protocols which are to be interfaced. If the duals of those sub-protocols are implemented in separate modules, we can separate active modules and inactive modules on the fly since only one of the modules can be active at a time. The active/inactive state of a module can be monitored by the control signals that represent the execution of the protocol corresponding to the module. Power reduction can be achieved by dynamically suppressing the clock supply to inactive modules. To trade-off the power reduction rate against the area overhead, the module granularity must be properly chosen. For this purpose, we implement the duals of the atomic protocols in the same module if their state graphs share states except the initial state. Our experimental results show that this method provides significant savings in power consumption of between 18.4% and 92.1% with a 5.3% area overhead.

  • Gain Scheduling Technique for Tracking Perturbed Equilibrium Points in Uncertain Nonlinear Systems

    Seon-Ho LEE  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E84-A No:7
      Page(s):
    1784-1788

    Most of the previous controllers proposed for output regulation problems on uncertain nonlinear systems tried to keep the state variables to the nominal equilibrium points. In this letter, however, the dynamic state feedback controller makes the state variables follow the perturbed equilibrium points computed from an equilibrium-estimator.

  • Distributed Power Control for Real-Time and TCP Packet Communications over CDMA Wireless Link

    Hideki SATOH  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E84-A No:7
      Page(s):
    1702-1713

    We propose a novel control method for an unknown distributed system, and apply it to transmission power control in a code-division multiple access (CDMA) wireless system. Our proposed distributed control contains conventional transmission power control and packet transmission rate control for constant bit rate (CBR) and transmission control protocol (TCP) connections. Using theoretical analysis and computer simulations we show that our method for transmission power control allows high bandwidth utilization for both CBR and TCP connections, and that conventional power control, by contrast, does not make efficient use of bandwidth in TCP connections.

  • Optimum Modulation Assignment According to Subband Channel Status for BST-OFDM

    Masayuki MOTEGI  Ryuji KOHNO  

     
    PAPER

      Vol:
    E84-A No:7
      Page(s):
    1714-1722

    This paper proposes and investigates optimum modulation assignment and band allocation scheme according to subband channel status for BST-OFDM system. The proposed system can adaptively optimize modulation assignment and band allocation according to the conditional parameter under independently fading subband channels. Specifically, in this paper only two optimization problems are treated in terms of modulation assignment. At first, an optimization criterion is a total Bit Error Rate (BER) subject to the constraint conditions of a desired total information bit rate under a fixed effective bandwidth. Another optimization problem is the maximization of a total information bit rate to satisfy a desired BER under a fixed effective bandwidth. Knowledge of the subband channel status is assumed to be updated by the feedback information from a receiver. This paper shows that the proposed system can overperform the conventional system in which all subbands employ the same modulation schemes in terms of BER. In addition, it is shown that the proposed system improves the overall information bit rate, which is not accomplishable in the conventional system.

  • An Object-Oriented Design of Electromagnetic Wave Simulator for Multi Schemes

    Hiroko O. UEDA  Masashi NAKATA  Takesi MURATA  Hideyuki USUI  Masaki OKADA  Koichi ITO  

     
    LETTER

      Vol:
    E84-C No:7
      Page(s):
    967-972

    We propose the architecture of efficiently and flexibly extensible solver system for electromagnetic wave simulations, that can load multi kinds of schemes such as Finite-Difference Time-Domain (FDTD) scheme, Finite Element Method (FEM), and a circuit simulator, with various boundary conditions in the system. Object-oriented approach is a promising method for efficient development of the flexible simulator. The primary object in the architecture is found through our object-oriented analysis as decomposed "region" from whole the simulation space. The decomposed region is considered to be the stage on which the electromagnetic fields play under the local rules. Developers who will extend the functionality of the system can add new classes inherited from the abstract classes in our design depending on the grid structure, the scheme, or the boundary processing method.

  • Development of an Analysis Method and Its Simulation Tool for Microstrip-Type Microwave Integrated Circuit Elements

    Nagayoshi MORITA  Yutaka YOSHIOKA  Norihiro HOSOYA  

     
    PAPER-Electromagnetics Simulation Techniques

      Vol:
    E84-C No:7
      Page(s):
    898-904

    A simulation tool for analyzing circuit characteristics of microstrip-type MIC (Microwave Integrated Circuit) passive elements is presented. The major part of this tool is the electromagnetic wave analysis based on the FD-TD (Finite-Difference Time-Domain) method combined with the mode expansion theory. Although the element structures which can be treated in this tool are limited to only less than ten fundamental structures in the present stage, its extension to the more versatile tool applicable to other various element types is rather straightforward and simple in principle. When using this tool, we first choose the element configuration to be calculated and give, on a panel, necessary parameter values related to calculation range and mesh division scheme. Given these values, the first step calculation starts to obtain the characteristic impedance, cross sectional field distribution of the propagating mode, etc. of the basic microstrip line. Field distributions around the element configulation are calculated next with the mode field oscillation being given. Through this process the field distributions on a closed rectangular parallelepiped surface enclosing the element configuration are stored in files, from which S parameter and radiated fields are calculated by invoking the reaction integral with propagation modes and radiation modes, respectively. The results obtained in these three steps can be expressed, at our discretion, as line drawings or two-dimensional density plots.

  • A Large-Signal Simulation Program for Multi-Stage Power Amplifier Modules by Using a Novel Interpolation

    Kazuhisa YAMAUCHI  Morishige HIEDA  Kazutomi MORI  Koji YAMANAKA  Yoshitada IYAMA  Tadashi TAKAGI  

     
    PAPER-Modeling of Nonlinear Microwave Circuits

      Vol:
    E84-C No:7
      Page(s):
    891-897

    A large-signal simulation program for multi-stage power amplifier modules by using a novel interpolation is presented. This simulation program has the function to make the Load-Pull and Source-Pull (LP/SP) data required for the simulation. By using the interpolation, a lot of LP/SP data can be made from a small number of measured LP/SP data. The interpolation is based on the calculation method using a two-dimensional function. By using the simulation program, we can calculate the large-signal characteristics depended on frequency and temperature of the multi-stage amplifier module. We apply the simulation program to the design of the amplifier. The calculated and measured results agree well. The accuracy of the presented interpolation is confirmed. It is considered that the presented program is useful to calculate large-signal characteristics of the amplifier module.

12201-12220hit(16314hit)