The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

9381-9400hit(21534hit)

  • Application of Noise-Enhanced Detection of Subthreshold Signals for Communication Systems

    Hyunju HAM  Toshimasa MATSUOKA  Kenji TANIGUCHI  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1012-1018

    A signal detection system using noise statistical processing is proposed. By approaching the problems of low voltage and high noise from miniaturization of a device from a stochastic point of view, a faint-signal receiving system that can effectively detect subthreshold and noise level signals has been developed. In addition, an alternative to statistical processing is proposed, and would be successfully implemented on a circuit. For the proposed signal detection method, the detection sensitivity was investigated using numerical simulation, and the detection sensitivity was sufficiently high to detect even a signal with a signal-to-inherent-noise ratio of -14 dB. Thus, it is anticipated that the application of this system to an integrated circuit will have a significant impact on signal processing.

  • Hardware-Oriented Early Detection Algorithms for 44 and 88 All-Zero Blocks in H.264

    Qin LIU  Yiqing HUANG  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1063-1071

    H.264 is the latest HDTV video compression standard, which provides a significant improvement in coding efficiency at the cost of huge computation complexity. After transform and quantization, if all the coefficients of the block's residue data are zero, this block is called all-zero block (AZB). Provided that an AZB can be detected early, the process of transform and quantization on an AZB can be skipped, which reduces significant redundant computations. In this paper, a theoretical analysis is performed for the sufficient condition for AZB detection. As a result, a partial sum of absolute difference (SAD) based 44 AZB detection algorithm is derived. And then, a hardware-oriented AZB detection algorithm is proposed by modifying the order of SAD calculation. Furthermore, a quantization parameter (QP) oriented 88 AZB detection algorithm is proposed according to the AZB's statistical analysis. Experimental results show that the proposed algorithm outperforms the previous methods in all cases and achieves major improvement of computation reduction in the range from 6.7% to 42.3% for 44 blocks, from 0.24% to 79.48% for 88 blocks. The computation reduction increases as QP increases.

  • Performance Evaluation of RTLS Based on Active RFID Power Measurement for Dense Moving Objects

    Taekyu KIM  Jin LEE  Seungbeom LEE  Sin-Chong PARK  

     
    LETTER-Sensing

      Vol:
    E92-B No:4
      Page(s):
    1422-1425

    Tracking a large quantity of moving target tags simultaneously is essential for the localization and guidance of people in welfare facilities like hospitals and sanatoriums for the aged. The locating system using active RFID technology consists of a number of fixed RFID readers and tags carried by the target objects, or senior people. We compare the performances of several determination algorithms which use the power measurement of received signals emitted by the moving active RFID tags. This letter presents a study on the effect of collision in tracking large quantities of objects based on active RFID real time location system (RTLS). Traditional trilateration, fingerprinting, and well-known LANDMARC algorithm are evaluated and compared with varying number of moving tags through the SystemC-based computer simulation. From the simulation, we show the tradeoff relationship between the number of moving tags and estimation accuracy.

  • Simultaneous Switching Noise Analysis for High-Speed Interface

    Narimasa TAKAHASHI  Kenji KAGAWA  Yutaka HONDA  Yo TAKAHASHI  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    460-467

    This paper describes the modeling and the analysis methodology to evaluate Simultaneous Switching Noise (SSN) for the combined system of the package with the 4-layer Printed Circuit Board (PCB), which the 64 Simultaneous Switching Outputs (SSOs) were included using a simple IBIS model. Simulation results showed that the ground plane in both package and PCB can be used as the reference to reduce SSN more effectively than the power plane. For the source synchronous timing technique such as used in a DDR SDRAM memory bus in the model shown in this paper, the skew control circuit tequiniqe is easy to apply in the chip design instead of using embedded capacitors in the package's substrate. And also the radiated emission and eye diagram analysis were studied.

  • A PN Junction-Current Model for Advanced MOSFET Technologies

    Ryosuke INAGAKI  Norio SADACHIKA  Mitiko MIURA-MATTAUSCH  Yasuaki INOUE  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    983-989

    A PN junction current model for advanced MOSFETs is proposed and implemented into HiSIM2, a complete surface-potential-based MOSFET model. The model includes forward diode currents and reverse diode currents, and requires a total of 13 model parameters covering all bias conditions. Model simulation results reproduce measurements for different device geometries over a wide range of bias and temperature values.

  • An ID Network System to Prepare for Global Environmental/Health Concerns

    Shoichiro ASANO  Susumu YONEDA  

     
    LETTER

      Vol:
    E92-B No:4
      Page(s):
    1153-1155

    Climate change and/or pandemics are global life threatening concerns. For verifying and utilizing monitored data for solving to the Climate Change concerns, a network system based on device ID would be proposed. In this paper, we review the recent standardization initiatives in ITU-T, and propose an ID network that can be used to verify the solutions.

  • Improvements in a Ferrite Core Permeability Dispersion Measurement Based on a Microstrip Line Method

    Atsushi KURAMOTO  Tomohiko KANIE  Masato ADACHI  Masashi KATO  Yuichi NORO  Takashi TAKEO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:4
      Page(s):
    532-538

    In this work, errors in a ferrite core permeability dispersion measurement using a microstrip line (MSL) method, where three kinds of MSL circuits are used, are evaluated by both an electromagnetic simulation technique and experiments. The computer simulated results have shown that although the measurement errors decrease according to the diameter of the winding wire which passes through a sample ferrite core becomes larger, that is the spacing between the wire and the core gets narrower, a certain amount of error still remains. In order to overcome this problem and improve the measurement accuracy, a metal pipe electrically connected to a ground plane for shielding is placed around the wire of the non-magnetic core circuit which is one of the three MSL circuits noted above.

  • EMI Reduction by Spread-Spectrum Clocking in Digitally-Controlled DC-DC Converters

    Ibuki MORI  Yoshihisa YAMADA  Santhos A. WIBOWO  Masashi KONO  Haruo KOBAYASHI  Yukihiro FUJIMURA  Nobukazu TAKAI  Toshio SUGIYAMA  Isao FUKAI  Norihisa ONISHI  Ichiro TAKEDA  Jun-ichi MATSUDA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1004-1011

    This paper proposes spread-spectrum clock modulation algorithms for EMI reduction in digitally-controlled DC-DC converters. In switching regulators using PWM, switching noise and harmonic noise concentrated in a narrow spectrum around the switching frequency can cause severe EMI. Spread-spectrum clock modulation can be used to minimize EMI. In conventional switching regulators using analog control it is very difficult to realize complex spread-spectrum clocking, however this paper shows that it is relatively easy to implement spread-spectrum EMI-reduction using digital control. The proposed algorithm was verified using a power converter simulator (SCAT).

  • Adaptive Selection of Surviving Symbol Replica Candidates for Quasi-Maximum Likelihood Detection Using M-Algorithm with QR-Decomposition for OFDM MIMO Multiplexing

    Kenichi HIGUCHI  Hiroyuki KAWAI  Hidekazu TAOKA  Noriyuki MAEDA  Mamoru SAWAHASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1258-1271

    This paper proposes an adaptive selection algorithm for the surviving symbol replica candidates (ASESS) based on the maximum reliability in maximum likelihood detection with QR decomposition and the M-algorithm (QRM-MLD) for Orthogonal Frequency Division Multiplexing (OFDM) multiple-input multiple-output (MIMO) multiplexing. In the proposed algorithm, symbol replica candidates newly-added at each stage are ranked for each surviving symbol replica from the previous stage using multiple quadrant detection. Then, branch metrics are calculated only for the minimum number of symbol replica candidates with a high level of reliability using an iterative loop based on symbol ranking results. Computer simulation results show that the computational complexity of the QRM-MLD employing the proposed ASESS algorithm is reduced to approximately 1/4 and 1/1200 compared to that of the original QRM-MLD and that of the conventional MLD with squared Euclidian distance calculations for all symbol replica candidates, respectively, assuming the identical achievable average packet error rate (PER) performance in 4-by-4 MIMO multiplexing with 16QAM data modulation. The results also show that 1-Gbps throughput is achieved at the average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) per receiver antenna of approximately 9 dB using the ASESS algorithm in QRM-MLD associated with 16QAM modulation and Turbo coding with the coding rate of 8/9 assuming a 100-MHz bandwidth for a 12-path Rayleigh fading channel (root mean square (r.m.s.) delay spread of 0.26 µs and maximum Doppler frequency of 20 Hz).

  • Ethernet Topology Detection from a Single Host without Assistance of Network Nodes or Other Hosts Open Access

    Yohei HASEGAWA  Masahiro JIBIKI  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1128-1136

    Topology information has become more important for management of LANs due to the increasing number of hosts attached to a LAN. We describe three Ethernet topology discovery techniques that can be used even in LANs with Ethernet switches that have no management functionality. Our "Shared Switch Detection (SSD)" technique detects the Ethernet tree topology by testing whether two paths in the network share a switch. SSD uses only general MAC address learning. By borrowing MAC addresses from hosts, SSD can be run from a single host. The second technique determines whether two paths between two pairs of hosts contain a switch. The third reduces the number of shared switch detections. Simulation showed that these techniques can be used to detect the Ethernet topology with a reasonable search cost. Examination on a real-world testbed showed that they could detect an Ethernet topology consisting of six hosts and two switches within one second.

  • Multi-Domain VLAN Path Signaling Method Having Tag Swapping Function for GMPLS Controlled Wide Area Layer-2 Network

    Kou KIKUTA  Masahiro NISHIDA  Daisuke ISHII  Satoru OKAMOTO  Naoaki YAMANAKA  

     
    LETTER-Switching for Communications

      Vol:
    E92-B No:4
      Page(s):
    1353-1356

    A multi-domain GMPLS layer-2 switch capable network with VLAN tag swapping is demonstrated for the first time. In this demonstration, we verify three new features, establishing path with designating VLAN IDs, swapping VLAN ID on prototype switch, and management of VLAN IDs per domain. Using those three features, carrier-class Ethernet backbone networks which supports path route designation in multi-domain network can be established.

  • 3DMRP: 3-Directional Zone-Disjoint Multipath Routing Protocol

    Dongseung SHIN  Dongkyun KIM  

     
    PAPER-Networks

      Vol:
    E92-D No:4
      Page(s):
    620-629

    In static wireless ad hoc networks such as wireless mesh networks and wireless sensor networks, multipath routing techniques are very useful for improving end-to-end delay, throughput, and load balancing, as compared to single-path routing techniques. When determining multiple paths, however, multipath routing protocols should address the well-known route coupling problem that results from a geographic proximity of adjacent routes and that hampers performance gain. Although a lot of multipath routing protocols have been proposed, most of them focused on obtaining node or link-disjoint multipaths. In order to address the route coupling problem, some multipath routing protocols utilizing zone-disjointness property were proposed. However, they suffer from an overhead of control traffic or require additional equipment such as directional antenna. This paper therefore proposes a novel multipath routing protocol, based on geographical information with low overhead, called 3-directional zone-disjoint multipath routing protocol (3DMRP). 3DMRP searches up to three zone-disjoint paths by using two techniques: 1) greedy forwarding, and 2) RREP-overhearing. One primary and two secondary paths are obtained via greedy forwarding in order to reduce control overhead, and these secondary paths are found by avoiding the RREP overhearing zone created during the primary path acquisition. In particular, two versions of 3DMRP are introduced in order to avoid the RREQ-overhearing zone. Through ns-2 simulations, 3DMRP is evaluated to verify that it achieves performance improvements in terms of throughput and control overhead.

  • Lagrangian Relaxation Based Inter-Layer Signal Via Assignment for 3-D ICs

    Song CHEN  Liangwei GE  Mei-Fang CHIANG  Takeshi YOSHIMURA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1080-1087

    Three-dimensional integrated circuits (3-D ICs), i.e., stacked dies, can alleviate the interconnect problem coming with the decreasing feature size and increasing integration density, and promise a solution to heterogenous integration. The vertical connection, which is generally implemented by the through-the-silicon via, is a key technology for 3-D ICs. In this paper, given 3-D circuit placement or floorplan results with white space reserved between blocks for inter-layer interconnections, we proposed methods for assigning inter-layer signal via locations. Introducing a grid structure on the chip, the inter-layer via assignment of two-layer chips can be optimally solved by a convex-cost max-flow formulation with signal via congestion optimized. As for 3-D ICs with three or more layers, the inter-layer signal via assignment is modeled as an integral min-cost multi-commodity flow problem, which is solved by a heuristic method based on the lagrangian relaxation. Relaxing the capacity constraints in the grids, we transfer the min-cost multi-commodity flow problem to a sequence of lagrangian sub-problems, which are solved by finding a sequence of shortest paths. The complexity of solving a lagrangian sub-problem is O(nntng2), where nnt is the number of nets and ng is the number of grids on one chip layer. The experimental results demonstrated the effectiveness of the method.

  • Low Cost Time Synchronization Protocol for Wireless Sensor Network

    Ki-Hyeon KIM  Won-Kee HONG  Hie-Cheol KIM  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1137-1143

    A time synchronization protocol for WSN is required to compensate time discrepancy. Time discrepancy among sensor nodes inevitably happens in WSN due to several internal and external factors. In order to make WSN's own job done effectively, a time synchronization protocol should be designed to achieve low execution time and low network traffic as well as accurate synchronization. Several synchronization protocols have been proposed to provide accurate time synchronization but do not consider execution time and network traffic for time synchronization. This paper proposes MNTP; it provides rapid and accurate time synchronization in multi-hop communication range. It presents a new broadcast scheme and time stamping mechanism to achieve low execution time and low network traffic along with accurate synchronization. Evaluation results show that MNTP improves synchronization accuracy up to 22% in single-hop and 51% in multi-hop respectively. MNTP also has 67 times and 58 times lower execution time and network traffic when 300 nodes are deployed in 2020 m2 sensor field.

  • Comprehensive Matching Characterization of Analog CMOS Circuits

    Hiroo MASUDA  Takeshi KIDA  Shin-ichi OHKAWA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    966-975

    A new analog mismatch model in circuit level has been developed. MOS transistor's small signal parameters are modeled in term of their matching character for both strong- and weak-inversion operations. Mismatch analysis on basic CMOS amplifiers are conducted with proposed model and Monte Carlo SPICE simulations. We successfully derived simple analytical formula on performance mismatch for analog CMOS circuits, which is verified to be accurate in using actual analog circuit design, within an average error of less than 10%.

  • Analysis of the IEEE 802.11 Back-Off Mechanism in Presence of Hidden Nodes

    Youngjip KIM  Chong-Ho CHOI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E92-B No:4
      Page(s):
    1291-1299

    The binary exponential back-off mechanism is one of the basic elements that constitute the IEEE 802.11 protocol. The models of the back-off mechanism have been developed with the assumption that collisions occur only due to nodes within the carrier sensing range and the collision probability is constant in steady-state. However, the transmission collisions can occur due to hidden nodes and these tend to occur consecutively, contrary to the collisions due to nodes within the carrier sensing range. Consecutive collisions increase the back-off time exponentially, resulting in less frequent transmission attempts. Ignoring this collision characteristic in modeling the back-off mechanism can produce large errors in the performance analysis of networks. In this paper, we model the back-off process as a Markov renewal process by taking into account such consecutive collisions due to hidden nodes, and then compare this result with NS2 simulation results. According to the simulation results, the proposed model reduces the relative error in the attempt probability by more than 90% in the grid topology. We also propose a new collision model for a simple network considering consecutive collisions due to hidden nodes, and analyze the network under saturated traffic condition using the proposed models. The attempt and collision probabilities are estimated with high accuracy.

  • Compactness of Family of Fuzzy Sets in L2 Space with Application to Optimal Control

    Takashi MITSUISHI  Yasunari SHIDAMA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    952-957

    The optimization of nonlinear feedback fuzzy system using the product-sum-gravity method is described in this paper. The fuzzy control discussed here is the nonlinear feedback control in which the feedback laws are determined by IF-THEN type fuzzy production rules through product-sum-gravity method. To prove existence of optimal control, we applied compactness of a set of membership functions in L2 space and continuity of the approximate reasoning, and prepared some propositions concerning product-sum-gravity method. By considering fuzzy optimal control problems as problems of finding the minimum (maximum) value of the integral cost (benefit) function on an appropriate set of membership functions, the existence of fuzzy optimal control is shown.

  • Reconfigurable AGU: An Address Generation Unit Based on Address Calculation Pattern for Low Energy and High Performance Embedded Processors

    Ittetsu TANIGUCHI  Praveen RAGHAVAN  Murali JAYAPALA  Francky CATTHOOR  Yoshinori TAKEUCHI  Masaharu IMAI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:4
      Page(s):
    1161-1173

    Low energy and high performance embedded processor is crucial in the future nomadic embedded systems design. Improvement of memory accesses, especially improvement of spatial and temporal locality is well known technique to reduce energy and increase performance. However, after transformations that improve locality, address calculation often becomes a bottleneck. In this paper, we propose novel AGU (Address Generation Unit) exploration and mapping technique based on a reconfigurable AGU model. Experimental results show that the proposed techniques help exploring AGU architectures effectively and designers can get trade-offs of real life applications for about 10 hours.

  • Interference Reduction Scheme for UHF Passive RFID Systems Using Modulation Index Control

    Yoshinori TANAKA  Iwao SASASE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1272-1281

    The performance of a UHF-band passive RFID system in a dense multi-reader environment is limited by both the reader-to-reader interference and reader-to-tag interference. In this paper, first, we propose a combination of subcarrier modulation backscattering and reduced carrier frequency offset among readers to reduce both the reader-to-reader interference and the reader-to-tag interference. Then, we propose a new distributed modulation index control scheme using the readers' estimation of the tag's SINR in order to further reduce the reader-to-tag interference. By adaptively controlling each reader's transmission modulation index, the asymmetric reader-to-tag interference can be effectively controlled to satisfy the required SINR of tags. Computer simulations show that the proposed scheme can reduce the minimum required inter-reader distance or increase the number of concurrently operable readers in dense multi-reader environments, especially when there are large differences in the levels of reader-to-tag interference. We show some optimizations of the proposed scheme for practical RFID applications. We also propose a bandwidth efficient modulation scheme for reader transmission which is suitable for the proposed modulation index control scheme.

  • XIR: Efficient Cache Invalidation Strategies for XML Data in Wireless Environments

    Jae-Ho CHOI  Sang-Hyun PARK  Myong-Soo LEE  SangKeun LEE  

     
    PAPER-Broadcast Systems

      Vol:
    E92-B No:4
      Page(s):
    1337-1345

    With the growth of wireless computing and the popularity of eXtensible Markup Language (XML), wireless XML data management is emerging as an important research area. In this paper, cache invalidation methodology with XML update is addressed in wireless computing environments. A family of XML cache invalidation strategies, called S-XIR, D-XIR and E-XIR, is suggested. Using S-XIR and D-XIR, the unchanged part of XML data, only its structure changes, can be effectively reused in client caching. E-XIR, which uses prefetching, can further improve access time. Simulations are carried out to evaluate the proposed methodology; they show that the proposed strategies improve both tuning time and access time significantly. In particular, the proposed strategies are on average about 4 to 12 times better than the previous approach in terms of tuning time.

9381-9400hit(21534hit)