The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

10421-10440hit(21534hit)

  • Rate Control for Zero-Forcing Beamforming Multiuser MIMO Systems with QR-Decomposition MLD Receiver

    Masaaki FUJII  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    637-640

    A rate control scheme is described for zero-forcing beamforming (ZFBF) multiuser multiple-input and multiple-output (MU-MIMO) systems with a QR-decomposition maximum likelihood detector (MLD) at the receiver. For selected users, a modulation-and-coding set is selected for each substream by estimating the per-substream post-MLD signal-to-interference-plus-noise ratio. Iterative modified QR-decomposition MLD is employed at the receiver to achieve the throughput expected from the transmitter. The simulation results demonstrated that the proposed rate-control scheme achieved the target packet error rate while increasing the throughout for ZFBF-MU-MIMO systems as the number of user candidates increases.

  • Analysis of Second-Order Modes of Linear Continuous-Time Systems under Positive-Real Transformations

    Shunsuke KOSHITA  Yousuke MIZUKAMI  Taketo KONNO  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:2
      Page(s):
    575-583

    This paper discusses the behavior of the second-order modes (Hankel singular values) of linear continuous-time systems under variable transformations with positive-real functions. That is, given a transfer function H(s) and its second-order modes, we analyze the second-order modes of transformed systems H(F(s)), where 1/F(s) is an arbitrary positive-real function. We first discuss the case of lossless positive-real transformations, and show that the second-order modes are invariant under any lossless positive-real transformation. We next consider the case of general positive-real transformations, and reveal that the values of the second-order modes are decreased under any general positive-real transformation. We achieve the derivation of these results by describing the controllability/observability Gramians of transformed systems, with the help of the lossless positive-real lemma, the positive-real lemma, and state-space formulation of transformed systems.

  • An Analysis for Fault-Tolerant 3D Processor Arrays Using 1.5-Track Switches

    Tadayoshi HORITA  Yuuji KATOU  Itsuo TAKANAMI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E91-A No:2
      Page(s):
    623-632

    This paper deals with redundant 3D mesh processor arrays using 1.5-track switches, considering track and switch faults together with processor faults. Four variants are defined based on the distributions of spare PEs, and arrays of three variants have the same PE redundancies among them, but the fabrication-time costs are different. We investigate in detail how the reliability of a total system changes according to the reliabilities of tracks and switches as well as PEs, and show the concrete values of Mt and Ms, when the reliability of array are almost the same even if its variant is changed, and when it is not so, respectively, where Mt and Ms are the ratio of the hardware complexities of a PE and a track, and that of a PE and a contact point of a switch, respectively. Other results which are effective basis for the design of fault-tolerant 3D PE arrays using 1.5-TSs are given.

  • An Edge-Preserving Super-Precision for Simultaneous Enhancement of Spacial and Grayscale Resolutions

    Hiroshi HASEGAWA  Toshinori OHTSUKA  Isao YAMADA  Kohichi SAKANIWA  

     
    PAPER-Image

      Vol:
    E91-A No:2
      Page(s):
    673-681

    In this paper, we propose a method that recovers a smooth high-resolution image from several blurred and roughly quantized low-resolution images. For compensation of the quantization effect we introduce measurements of smoothness, Huber function that is originally used for suppression of block noises in a JPEG compressed image [Schultz & Stevenson '94] and a smoothed version of total variation. With a simple operator that approximates the convex projection onto constraint set defined for each quantized image [Hasegawa et al. '05], we propose a method that minimizes these cost functions, which are smooth convex functions, over the intersection of all constraint sets, i.e. the set of all images satisfying all quantization constraints simultaneously, by using hybrid steepest descent method [Yamada & Ogura '04]. Finally in the numerical example we compare images derived by the proposed method, Projections Onto Convex Sets (POCS) based conventinal method, and generalized proposed method minimizing energy of output of Laplacian.

  • A Finite Element-Domain Decomposition Coupled Resistance Extraction Method with Virtual Terminal Insertion

    Bo YANG  Hiroshi MURATA  Shigetoshi NAKATAKE  

     
    PAPER

      Vol:
    E91-A No:2
      Page(s):
    542-549

    This paper addresses the on-resistance (Ron) extraction of the DMOS based driver in Power IC designs. The proposed method can extract Ron of a driver from its layout data for the arbitrarily shaped metallization patterns. Such a driver is usually composed of arbitrarily shaped metals, arrayed vias, and DMOS transistors. We use FEM to extract the parasitic resistance of the source/drain metals since its strong contribution to Ron. In order to handle the large design case and accelerate the extraction process, a domain decomposition with virtual terminal insertion method is introduced, which succeeds in extraction for a set of industrial test cases including those the FEM without domain decomposition failed in. For a layout in which the DMOS cells are regularly placed, a sub-domain reuse procedure is also proposed, which obtained a dramatic speedup for the extraction. Even without the sub-domain reuse, our method still shows advantage in runtime and memory usage according to the simulation results.

  • An IIP2 Calibration Technique for Zero-IF Multi Band down Converter Mixer

    Mohammad B. VAHIDFAR  Omid SHOAEI  

     
    PAPER

      Vol:
    E91-A No:2
      Page(s):
    529-534

    Meeting the tough linearity and noise required by GSM and UMTS receivers in CMOS technology is challenging. A new IIP2 calibration technique based on canceling the second order nonlinearities of mixer, generated in the input RF transistors, is introduced. By using this technique about 22 dB mixer IIP2 improvement is achieved. The proposed calibration circuit can be used in multi-standard mixer because of high bandwidth of the calibration circuitry. Moreover it can work with voltage supplies as low as 1 V. Using this technique a multi-standard mixer supporting PCS, UMTS and IEEE802.11b-g is developed. The design is done in CMOS 65 nm technology with 1.2 V supply while it consumes about 7 mA current.

  • Isosceles-Trapezoidal-Distribution Edge Tapered Array Antenna with Unequal Element Spacing for Solar Power Satellite

    A.K.M. BAKI  Kozo HASHIMOTO  Naoki SHINOHARA  Tomohiko MITANI  Hiroshi MATSUMOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E91-B No:2
      Page(s):
    527-535

    The Earth will require sustainable electricity sources equivalent to 3 to 5 times the commercial power presently produced by 2050. Solar Power Satellite (SPS) is one option for meeting the huge future energy demand. SPS can send enormous amounts of power to the Earth as the form of microwave (MW). A highly efficient microwave power transmission (MPT) system is needed for SPS. A critical goal of SPS is to maintain highest Beam Efficiency (BE) because the microwaves from SPS will be converted to utility power unlike the MW from communication satellites. Another critical goal of SPS is to maintain Side Lobe Levels (SLL) as small as possible to reduce interference to other communication systems. One way to decrease SLL and increase BE is the edge tapering of a phased array antenna. However, tapering the excitation requires a technically complicated system. Another way of achieving minimum SLL is with randomly spaced element position but it does not guarantee higher BE and the determination of random element position is also a difficult task. Isosceles Trapezoidal Distribution (ITD) edge tapered antenna was studied for SPS as an optimization between full edge tapering and uniform amplitude distribution. The highest Beam Collection Efficiency (BCE) and lowest SLL (except maximum SLL) are possible to achieve in ITD edge tapering and ITD edge tapered antenna is technically better. The performance of ITD is further improved from the perspective of both Maximum Side Lobe Level (MSLL) and BE by using unequal spacing of the antenna elements. A remarkable reduction in MSLL is achieved with ITD edge tapering with Unequal element spacing (ITDU). BE was also highest in ITDU. Determination of unequal element position for ITDU is very easy. ITDU is a newer concept that is experimented for the first time. The merits of ITDU over ITD and Gaussian edge tapering are discussed.

  • Learning of Finite Unions of Tree Patterns with Internal Structured Variables from Queries

    Satoshi MATSUMOTO  Takayoshi SHOUDAI  Tomoyuki UCHIDA  Tetsuhiro MIYAHARA  Yusuke SUZUKI  

     
    PAPER-Algorithmic Learning Theory

      Vol:
    E91-D No:2
      Page(s):
    222-230

    A linear term tree is defined as an edge-labeled rooted tree pattern with ordered children and internal structured variables whose labels are mutually distinct. A variable can be replaced with arbitrary edge-labeled rooted ordered trees. We consider the polynomial time learnability of finite unions of linear term trees in the exact learning model formalized by Angluin. The language L(t) of a linear term tree t is the set of all trees obtained from t by substituting arbitrary edge-labeled rooted ordered trees for all variables in t. Moreover, for a finite set S of linear term trees, we define L(S)=∪t∈S L(t). A target of learning, denoted by T*, is a finite set of linear term trees, where the number of edge labels is infinite. In this paper, for any set T* of m linear term trees (m ≥ 0), we present a query learning algorithm which exactly identifies T* in polynomial time using at most 2mn2 Restricted Subset queries and at most m+1 Equivalence queries, where n is the maximum size of counterexamples. Finally, we note that finite sets of linear term trees are not learnable in polynomial time using Restricted Equivalence, Membership and Subset queries.

  • Distributed Multiple Access Control for the Wireless Mesh Personal Area Networks

    Moo Sung PARK  Byungjoo LEE  Seung Hyong RHEE  

     
    PAPER-Networks

      Vol:
    E91-D No:2
      Page(s):
    258-263

    Mesh networking technologies for both high-rate and low-rate wireless personal area networks (WPANs) are under development by several standardization bodies. They are considering to adopt distributed TDMA MAC protocols to provide seamless user mobility as well as a good peer-to-peer QoS in WPAN mesh. It has been, however, pointed out that the absence of a central controller in the wireless TDMA MAC may cause a severe performance degradation: e.g., fair allocation, service differentiation, and admission control may be hard to achieve or can not be provided. In this paper, we suggest a new framework of resource allocation for the distributed MAC protocols in WPANs. Simulation results show that our algorithm achieves both a fair resource allocation and flexible service differentiations in a fully distributed way for mesh WPANs where the devices have high mobility and various requirements. We also provide an analytical modeling to discuss about its unique equilibrium and to compute the lengths of reserved time slots at the stable point.

  • Sliding Mode Controller Design with H Norm and Variance Constraints for Bilinear Stochastic Systems

    Koan-Yuh CHANG  Huan-Jung LIN  Tsung-Lin CHENG  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:2
      Page(s):
    686-691

    Based on the concept of sliding mode control, this paper investigates the upper bound covariance assignment with H∞ norm and variance constrained problem for bilinear stochastic systems. We find that the invariance property of sliding mode control ensures nullity of the matched bilinear term in the system on the sliding mode. Moreover, using the upper bound covariance control approach and combining the sliding phase and hitting phase of the system design, we will derive the control feedback gain matrix G, which is essential to the controller u(t) design, to achieve the performance requirements. Finally, a numerical example is given to illustrate the control effect of the proposed method.

  • A Polyphase Transfer Function Design Based on Frequency Transformation from Prototype LPF

    Cosy MUTO  

     
    LETTER

      Vol:
    E91-A No:2
      Page(s):
    554-556

    In this paper, a frequency transformation for designing polyphase transfer functions is proposed. A modification to the bilinear LP-LP transformation, which assigns both stopband edges on negative frequency range whereas passband edges are on positive one, results polyphase transfer functions. Design examples show validity of the proposed method.

  • A Novel Local Smoothness Constrained Side-Information Frame Generator

    Peng WANG  Jia WANG  Songyu YU  Yuye PANG  

     
    LETTER-Coding Theory

      Vol:
    E91-A No:2
      Page(s):
    692-694

    The quality of the Side-information frame (S frame) influences significantly the rate-distortion performance in the Distributed Video Coding (DVC). In this letter, we propose an efficient Side-Information Frame Generator (SIFG). It considers smoothness constraints of both the motion vector field and spatial adjacent pixels. Simulation results show that the proposed techniques provide potential rate-distortion performance advantages. Besides, the fine visual quality of the S frame is obtained.

  • New Inter-Cluster Proximity Index for Fuzzy c-Means Clustering

    Fan LI  Shijin DAI  Qihe LIU  Guowei YANG  

     
    LETTER-Data Mining

      Vol:
    E91-D No:2
      Page(s):
    363-366

    This letter presents a new inter-cluster proximity index for fuzzy partitions obtained from the fuzzy c-means algorithm. It is defined as the average proximity of all possible pairs of clusters. The proximity of each pair of clusters is determined by the overlap and the separation of the two clusters. The former is quantified by using concepts of Fuzzy Rough sets theory and the latter by computing the distance between cluster centroids. Experimental results indicate the efficiency of the proposed index.

  • Improved Channel Estimation in Spatially-Correlated Flat-Fading MIMO Systems: A Parametric Approach

    Ming LUO  Qinye YIN  Ang FENG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    662-665

    We address pilot-aided channel estimation for a flat-fading spatially-correlated MIMO system, which employing Uniform Linear Arrays (ULA) on dual side and working in sparse scattering (multipath) environment. In case of sparse scattering, channel matrix and spatial correlation of flat-fading MIMO systems are parameterized by structure of multipaths, which is represented as Direction of Arrivals (DOAs), Direction of Departures (DODs) and complex path fading of each path. Based on this and block-fading property of channel, we design a channel estimation method via estimating multipath parameters using ESPRIT-like DOA-Matrix method which exploits shift-invariance property of ULA. The proposed method is able to obtain improved Mean-Square-Error performance than Least-Square method without prior information of spatial correlation.

  • Performance Analysis of M-ary Orthogonal Code Shift Keying in Fading Channels

    Masaaki HARADA  Keiji TANIGUCHI  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E91-B No:2
      Page(s):
    673-676

    The average bit error rate performances of M-ary orthogonal code shift keying (CSK) in Rician fading environments are analyzed in this letter. CSK is a digital modulation scheme that uses a code set as M-ary signals. In CSK, one code is selected from a code set containing M codes according to the information data. A signal is modulated by using this code and the effect of fading can be reduced by applying interleaving to the elements of the codes. In the analysis, the bit error probability is derived in closed form expression by using the Chernoff bound. The analysis results show that the error probability decreases when the code length is increased and that an arbitrarily small error probability is achieved as the code length approaches infinity, provided that Eb/N0 exceeds 1.42 dB.

  • A Study of Control Plane Stability with Retry Traffic: Comparison of Hard- and Soft-State Protocols

    Masaki AIDA  Chisa TAKANO  Masayuki MURATA  Makoto IMASE  

     
    PAPER-Network Management/Operation

      Vol:
    E91-B No:2
      Page(s):
    437-445

    Recently problems with commercial IP telephony systems have been reported one after another, in Japan. One of the important causes is congestion in the control plane. It has been recognized that with the current Internet it is important to control not only congestion caused by overload of the data plane but also congestion caused by overload of the control plane. In particular, "retry traffic," such as repeated attempts to set up a connection, tends to cause congestion. In general, users make repeated attempt to set up connections not only when the data plane is congested but also when the control plane in the network is overloaded. The latter is caused by user behavior: an increase in the waiting time for the processing of connection establishment to be completed tends to increase his or her initiation of reattempts. Thus, it is important to manage both data plane and control-plane resources effectively. In this paper, we focus on RSVP-based communication services including IP telephony, and introduce a model that takes account of both data-plane and control-plane systems, and we examine the behavior of retry traffic. In addition, we compare the system stability achieved by two different resource management methods, the hard-state method and the soft-state method.

  • Filtering False Positives Based on Server-Side Behaviors

    Makoto SHIMAMURA  Miyuki HANAOKA  Kenji KONO  

     
    PAPER-Application Information Security

      Vol:
    E91-D No:2
      Page(s):
    264-276

    Reducing the rate of false positives is of vital importance in enhancing the usefulness of signature-based network intrusion detection systems (NIDSs). To reduce the number of false positives, a network administrator must thoroughly investigate a lengthy list of signatures and carefully disable the ones that detect attacks that are not harmful to the administrator's environment. This is a daunting task; if some signatures are disabled by mistake, the NIDS fails to detect critical remote attacks. We designed a NIDS, TrueAlarm, to reduce the rate of false positives. Conventional NIDSs alert administrators that a malicious message has been detected, regardless of whether the message actually attempts to compromise the protected server. In contrast, TrueAlarm delays the alert until it has confirmed that an attempt has been made. The TrueAlarm NIDS cooperates with a server-side monitor that observes the protected server's behavior. TrueAlarm only alerts administrators when a server-side monitor has detected deviant server behavior that must have been caused by a message detected by a NIDS. Our experimental results revealed that TrueAlarm reduces the rate of false positives. Using actual network traffic collected over 14 days, TrueAlarm produced 46 false positives, while Snort, a conventional NIDS, produced 818.

  • Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities

    Andrew W. POON  Linjie ZHOU  Fang XU  Chao LI  Hui CHEN  Tak-Keung LIANG  Yang LIU  Hon K. TSANG  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    156-166

    In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas--microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.

  • Area-Time Efficient Modulo 2n-1 Adder Design Using Hybrid Carry Selection

    Su-Hon LIN  Ming-Hwa SHEU  

     
    LETTER-Computer Components

      Vol:
    E91-D No:2
      Page(s):
    361-362

    A new Hybrid-Carry-Selection (HCS) approach for deriving an efficient modulo 2n-1 addition is presented in this study. Its resulting adder architecture is simple and applicable for all n values. Based on 180-nm CMOS technology, the HCS-based modulo 2n-1 adder demonstrates its superiority in Area-Time (AT) performance over existing solutions.

  • A Low-Power Low-Noise Clock Signal Generator for Next-Generation Mobile Wireless Terminals

    Akihide SAI  Daisuke KUROSE  Takafumi YAMAJI  Tetsuro ITAKURA  

     
    LETTER

      Vol:
    E91-A No:2
      Page(s):
    557-560

    Sampling clock jitter degrades the dynamic range of an analog-to-digital converter (ADC). In this letter, a low-power low-noise clock signal generator for ADCs is described. As a clock signal generator, a ring-VCO-based charge pump PLL is used to reduce power dissipation within a given jitter specification. The clock signal generator is fabricated on a CMOS chip with 200-MSPS 10-bit ADC. The measured results show that the ADC keeps a 60-MHz input bandwidth and 53-dB dynamic range and a next-generation mobile wireless terminal can be realized with the ADCs and the on-chip low-power clock generator.

10421-10440hit(21534hit)