The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

10261-10280hit(21534hit)

  • Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    Kazunori SHIMIZU  Nozomu TOGAWA  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1054-1061

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  • Planar T-Shaped Monopole Antenna for WLAN/WiMAX Applications

    Jhin-Fang HUANG  Shih-Huang WU  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:4
      Page(s):
    625-630

    A multiband T-shaped monopole antenna for WLAN/WiMAX applications is presented. The T-shaped monopole is comprised of two horizontal arms of different lengths, which generate two separate resonant modes for 2.5/5.5 GHz WLAN/WiMAX bands, and with a shortened parasitic element, which generates a middle resonant mode for 3.5 GHz WiMAX band, for seamless wireless network access applications. The proposed antenna has been successfully simulated and implemented. Both results of simulation and measurement show good agreement. For the lower band from 2.3 to 2.7 GHz, the gain varies in the range of 2.5-3.3 dB, while the radiation efficiency is from 72% to 85% over the band. As for the middle band from 3.3 to 3.7 GHz, the gain varies from 1.5 to 2.0 dB, and the radiation efficiency is from 62% to 70%. As for the upper band from 5.2 to 5.8 GHz, the antenna gain varies from 5.4 to 5.9 dB, and the radiation efficiency is from 63% to 66%.

  • Motion Belts: Visualization of Human Motion Data on a Timeline

    Hiroshi YASUDA  Ryota KAIHARA  Suguru SAITO  Masayuki NAKAJIMA  

     
    PAPER-Computer Graphics

      Vol:
    E91-D No:4
      Page(s):
    1159-1167

    Because motion capture system enabled us to capture a number of human motions, the demand for a method to easily browse the captured motion database has been increasing. In this paper, we propose a method to generate simple visual outlines of motion clips, for the purpose of efficient motion data browsing. Our method unfolds a motion clip into a 2D stripe of keyframes along a timeline that is based on semantic keyframe extraction and the best view point selection for each keyframes. With our visualization, timing and order of actions in the motions are clearly visible and the contents of multiple motions are easily comparable. In addition, because our method is applicable for a wide variety of motions, it can generate outlines for a large amount of motions fully automatically.

  • Construction of Appearance Manifold with Embedded View-Dependent Covariance Matrix for 3D Object Recognition

    Lina  Tomokazu TAKAHASHI  Ichiro IDE  Hiroshi MURASE  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:4
      Page(s):
    1091-1100

    We propose the construction of an appearance manifold with embedded view-dependent covariance matrix to recognize 3D objects which are influenced by geometric distortions and quality degradation effects. The appearance manifold is used to capture the pose variability, while the covariance matrix is used to learn the distribution of samples for gaining noise-invariance. However, since the appearance of an object in the captured image is different for every different pose, the covariance matrix value is also different for every pose position. Therefore, it is important to embed view-dependent covariance matrices in the manifold of an object. We propose two models of constructing an appearance manifold with view-dependent covariance matrix, called the View-dependent Covariance matrix by training-Point Interpolation (VCPI) and View-dependent Covariance matrix by Eigenvector Interpolation (VCEI) methods. Here, the embedded view-dependent covariance matrix of the VCPI method is obtained by interpolating every training-points from one pose to other training-points in a consecutive pose. Meanwhile, in the VCEI method, the embedded view-dependent covariance matrix is obtained by interpolating only the eigenvectors and eigenvalues without considering the correspondences of each training image. As it embeds the covariance matrix in manifold, our view-dependent covariance matrix methods are robust to any pose changes and are also noise invariant. Our main goal is to construct a robust and efficient manifold with embedded view-dependent covariance matrix for recognizing objects from images which are influenced with various degradation effects.

  • Full-Rate STBCs from Coordinate Interleaved Orthogonal Designs in Time-Selective Fading Channels

    Hoojin LEE  Jeffrey G. ANDREWS  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1185-1189

    Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) have attracted a great deal of attention due to their full-diversity and linear maximum likelihood (ML) decodability. In this letter, we propose a simple detection technique, particularly for full-rate STBCs from CIODs to overcome the performance degradation caused by time-selective fading channels. Furthermore, we evaluate the effects of time-selective fading channels and imperfect channel estimation on STBCs from CIODs by using a newly-introduced index, the results of which demonstrate that full-rate STBCs from CIODs are more robust against time-selective fading channels than conventional full-rate STBCs.

  • Statistical Corner Conditions of Interconnect Delay (Corner LPE Specifications)

    Kenta YAMADA  Noriaki ODA  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    562-570

    Timing closure in LSI design is becoming more and more difficult. But the conventional interconnect RC extraction method has over-margins caused by its corner conditions settings. In this paper, statistical corner conditions using the independence of variations between process parameters and between interconnect layers are proposed, with examinations using the measurement data. As a result of the method, the fast-to-slow guardband decreases by half in average, compared to the conventional method. The proposed method is ready for implementation to LPE tools.

  • A Fuzzy Method for Medical Diagnosis of Headache

    Jeong-Yong AHN  Kill-Sung MUN  Young-Hyun KIM  Sun-Young OH  Beom-Soo HAN  

     
    LETTER-Biological Engineering

      Vol:
    E91-D No:4
      Page(s):
    1215-1217

    In this note we propose a fuzzy diagnosis of headache. The method is based on the relations between symptoms and diseases. For this purpose, we suggest a new diagnosis measure using the occurrence information of patient's symptoms and develop an improved interview chart with fuzzy degrees assigned according to the relation among symptoms and three labels of headache. The proposed method is illustrated by two examples.

  • A Low-Cost BIST Based on Histogram Testing for Analog to Digital Converters

    Kicheol KIM  Youbean KIM  Incheol KIM  Hyeonuk SON  Sungho KANG  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E91-C No:4
      Page(s):
    670-672

    In this letter a histogram-based BIST (Built-In Self-Test) approach for deriving the main characteristic parameters of an ADC (Analog to Digital Converter) such as offset, gain and non-linearities is proposed. The BIST uses a ramp signal as an input signal and two counters as a response analyzer to calculate the derived static parameters. Experimental results show that the proposed method reduces the hardware overhead and testing time while detecting any static faults in an ADC.

  • Reliable Cache Architectures and Task Scheduling for Multiprocessor Systems

    Makoto SUGIHARA  Tohru ISHIHARA  Kazuaki MURAKAMI  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    410-417

    This paper proposes a task scheduling approach for reliable cache architectures (RCAs) of multiprocessor systems. The RCAs dynamically switch their operation modes for reducing the usage of vulnerable SRAMs under real-time constraints. A mixed integer programming model has been built for minimizing vulnerability under real-time constraints. Experimental results have shown that our task scheduling approach achieved 47.7-99.9% less vulnerability than a conventional one.

  • Improving Automatic Text Classification by Integrated Feature Analysis

    Lazaro S.P. BUSAGALA  Wataru OHYAMA  Tetsushi WAKABAYASHI  Fumitaka KIMURA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:4
      Page(s):
    1101-1109

    Feature transformation in automatic text classification (ATC) can lead to better classification performance. Furthermore dimensionality reduction is important in ATC. Hence, feature transformation and dimensionality reduction are performed to obtain lower computational costs with improved classification performance. However, feature transformation and dimension reduction techniques have been conventionally considered in isolation. In such cases classification performance can be lower than when integrated. Therefore, we propose an integrated feature analysis approach which improves the classification performance at lower dimensionality. Moreover, we propose a multiple feature integration technique which also improves classification effectiveness.

  • Hardware Neural Network for a Visual Inspection System

    Seungwoo CHUN  Yoshihiro HAYAKAWA  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    935-942

    The visual inspection of defects in products is heavily dependent on human experience and instinct. In this situation, it is difficult to reduce the production costs and to shorten the inspection time and hence the total process time. Consequently people involved in this area desire an automatic inspection system. In this paper, we propose a hardware neural network, which is expected to provide high-speed operation for automatic inspection of products. Since neural networks can learn, this is a suitable method for self-adjustment of criteria for classification. To achieve high-speed operation, we use parallel and pipelining techniques. Furthermore, we use a piecewise linear function instead of a conventional activation function in order to save hardware resources. Consequently, our proposed hardware neural network achieved 6GCPS and 2GCUPS, which in our test sample proved to be sufficiently fast.

  • Clear Channel Assessment in Ultra-Wideband Sensor Networks

    Bin ZHEN  Huan-Bang LI  Ryuji KOHNO  

     
    PAPER-Network

      Vol:
    E91-B No:4
      Page(s):
    998-1005

    Impulse ultra-wideband (UWB) is an attractive technology for large ad hoc sensor networks due to its precise ranging capacity, multi-path fading robustness and low radiation power. The transient and carrier-less nature of low radiation pulse and harsh multipath channel condition makes it cumbersome to implement carrier sensing. We proposed clear channel assessment (CCA) based on preamble-assisted modulation (PAM) for UWB sensor networks. Preamble symbols are periodically inserted into the frame payload in the time domain to serve as regular feature for reliable CCA. We simulated the CCA performance in the multipath UWB channel model developed by IEEE 802.15.4a. PAM and CCA configurations were optimized for the distributed carrier sense multiple access protocol. PAM was accepted by 802.15.4a group as an optional feature. Furthermore, the multiplexed preamble symbols can be exploited for channel estimation to improve communication and ranging.

  • Prediction of Fault-Prone Software Modules Using a Generic Text Discriminator

    Osamu MIZUNO  Tohru KIKUNO  

     
    PAPER-Software Engineering

      Vol:
    E91-D No:4
      Page(s):
    888-896

    This paper describes a novel approach for detecting fault-prone modules using a spam filtering technique. Fault-prone module detection in source code is important for the assurance of software quality. Most previous fault-prone detection approaches have been based on using software metrics. Such approaches, however, have difficulties in collecting the metrics and constructing mathematical models based on the metrics. Because of the increase in the need for spam e-mail detection, the spam filtering technique has progressed as a convenient and effective technique for text mining. In our approach, fault-prone modules are detected in such a way that the source code modules are considered text files and are applied to the spam filter directly. To show the applicability of our approach, we conducted experimental applications using source code repositories of Java based open source developments. The result of experiments shows that our approach can correctly predict 78% of actual fault-prone modules as fault-prone.

  • Rate Adaptation Based on Collision Probability for IEEE 802.11 WLANs

    Taejoon KIM  Jong-Tae LIM  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E91-B No:4
      Page(s):
    1227-1230

    Nowadays IEEE 802.11 wireless local area networks (WLANs) support multiple transmission rates. To achieve the best performance, transmitting stations adopt the various forms of automatic rate fallback (ARF). However, ARF suffers from severe performance degradation as the number of transmitting stations increases. In this paper, we propose a new rate adaptation scheme which adjusts the ARF's up/down threshold according to the channel contention level. Simulation result shows that the proposed scheme achieves fairly good performance compared with the existing schemes.

  • A Multiprocessor SoC Architecture with Efficient Communication Infrastructure and Advanced Compiler Support for Easy Application Development

    Mohammad ZALFANY URFIANTO  Tsuyoshi ISSHIKI  Arif ULLAH KHAN  Dongju LI  Hiroaki KUNIEDA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:4
      Page(s):
    1185-1196

    This paper presents a Multiprocessor System-on-Chips (MPSoC) architecture used as an execution platform for the new C-language based MPSoC design framework we are currently developing. The MPSoC architecture is based on an existing SoC platform with a commercial RISC core acting as the host CPU. We extend the existing SoC with a multiprocessor-array block that is used as the main engine to run parallel applications modeled in our design framework. Utilizing several optimizations provided by our compiler, an efficient inter-communication between processing elements with minimum overhead is implemented. A host-interface is designed to integrate the existing RISC core to the multiprocessor-array. The experimental results show that an efficacious integration is achieved, proving that the designed communication module can be used to efficiently incorporate off-the-shelf processors as a processing element for MPSoC architectures designed using our framework.

  • A PVT Tolerant STM-16 Clock-and-Data Recovery LSI Using an On-Chip Loop-Gain Variation Compensation Architecture in 0.20-µm CMOS/SOI

    Yusuke OHTOMO  Hiroshi KOIZUMI  Kazuyoshi NISHIMURA  Masafumi NOGAWA  

     
    PAPER-Integrated Electronics

      Vol:
    E91-C No:4
      Page(s):
    655-661

    This paper proposes an on-chip loop gain variation compensation architecture for a clock and data recovery (CDR) LSI. The CDR LSI using the proposed architecture can meet the jitter specifications recommended in ITU-T G.958 under wide variation of temperature and supply voltage. The relation between the jitter specifications and the loop gain is derived theoretically. Gain-variation characteristics of component circuits are studied by circuit simulation. The proposed architecture uses voltage controllers to reduce the gain variation of the LC voltage controlled oscillator (LC-VCO) circuit and charge-pump circuit. The voltage controllers are designed to have a first-order positive coefficient to temperature, which is found by an analysis of the gain variation characteristics. An STM-16 CDR with the proposed architecture is implemented in 0.20-µm fully depleted CMOS/SOI. The CDR shows a wide capture range of 140 MHz and meets both the jitter transfer and the jitter tolerance specifications in the ambient temperature range from -40 to 85 and with the supply voltage variation of 6%.

  • Instant Casting Movie Theater: The Future Cast System

    Akinobu MAEJIMA  Shuhei WEMLER  Tamotsu MACHIDA  Masao TAKEBAYASHI  Shigeo MORISHIMA  

     
    PAPER-Computer Graphics

      Vol:
    E91-D No:4
      Page(s):
    1135-1148

    We have developed a visual entertainment system called "Future Cast" which enables anyone to easily participate in a pre-recorded or pre-created film as an instant CG movie star. This system provides audiences with the amazing opportunity to join the cast of a movie in real-time. The Future Cast System can automatically perform all the processes required to make this possible, from capturing participants' facial characteristics to rendering them into the movie. Our system can also be applied to any movie created using the same production process. We conducted our first experimental trial demonstration of the Future Cast System at the Mitsui-Toshiba pavilion at the 2005 World Exposition in Aichi Japan.

  • MTR-Fill: A Simulated Annealing-Based X-Filling Technique to Reduce Test Power Dissipation for Scan-Based Designs

    Dong-Sup SONG  Jin-Ho AHN  Tae-Jin KIM  Sungho KANG  

     
    LETTER-Dependable Computing

      Vol:
    E91-D No:4
      Page(s):
    1197-1200

    This paper proposes the minimum transition random X-filling (MTR-fill) technique, which is a new X-filling method, to reduce the amount of power dissipation during scan-based testing. In order to model the amount of power dissipated during scan load/unload cycles, the total weighted transition metric (TWTM) is introduced, which is calculated by the sum of the weighted transitions in a scan-load of a test pattern and a scan-unload of a test response. The proposed MTR-fill is implemented by simulated annealing method. During the annealing process, the TWTM of a pair of test patterns and test responses are minimized. Simultaneously, the MTR-fill attempts to increase the randomness of test patterns in order to reduce the number of test patterns needed to achieve adequate fault coverage. The effectiveness of the proposed technique is shown through experiments for ISCAS'89 benchmark circuits.

  • Computer Simulation about Temperature Distribution of an EM-Wave Absorber Using a Coupled Analysis Method

    Shinya WATANABE  Akitoshi TANIGUCHI  Kota SAITO  Osamu HASHIMOTO  Toshifumi SAITO  Hiroshi KURIHARA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:4
      Page(s):
    638-646

    Utilization of electromagnetic absorbers under high power is increasing. The absorbers are used in anechoic chambers for performance estimation of high power radars. Variation of the absorption characteristics of the absorbers under such conditions is expected, due to the generation of heat or temperature change. In this paper, first the temperature distribution of a λ/4 type EM-wave absorber under high power injection is examined using the coupled method. The coupled method can calculate the electromagnetic field and all of the heat transmissions (heat transport, heat transfer and heat radiation). Next, the power injection experiment is examined using the absorber and high power instruments to get the temperature distribution experimentally. Finally the calculated and measured temperature distributions of the absorber are compared and discussed.

  • Highly Reliable Multiple-Valued Current-Mode Comparator Based on Active-Load Dual-Rail Operation

    Masatomo MIURA  Takahiro HANYU  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    589-594

    In this paper, a multiple-valued current-mode (MVCM) circuit based on active-load dual-rail differential logic is proposed for a high-performance arithmetic VLSI system with crosstalk-noise immunity. The use of dual-rail complementary differential-pair circuits (DPCs), whose outputs are summed up by wiring makes it possible to reduce the common-mode noise, and yet enhance the switching speed. By using the diode-connected cross-coupled PMOS active loads, the rapid transition of switching in the DPC is relaxed appropriately, which can also eliminate spiked input noise. It is demonstrated that the noise reduction ratio and the switching delay of the proposed MVCM circuit in a 90 nm CMOS technology is superior to those of the corresponding ordinary implementation.

10261-10280hit(21534hit)