Masamitsu HONDA Satoshi ISOFUKU
This paper shows that the induced peak voltage on the short monopole antenna by the EM field radiated from a small gap discharge when the gap width was experimentally changed from 10 to 360µm was not directly proportional to the discharge voltage between the gap. It was found that the 10mm short monopole antenna induced peak voltage had a peak value between 40 and 60µm gap width.
Fatemeh ABRISHAMIAN Katsumi MORISHITA
A novel method was developed to expand and adjust the bandwidth of long-period fiber gratings (LPFGs) as band-rejection filters. The band-rejection filters were constructed by concatenating two LPFGs with an appropriate space, that causes a $pi$-phase shift. The component LPFGs with the same period and the different numbers of periods are designed to have $-$3-dB transmission at wavelengths on both sides of a resonance wavelength symmetrically, and the transmission loss of the concatenated LPFGs peaks at the -3-dB transmission wavelengths. The rejection bandwidth was widened by changing the interval between the -3-dB transmission wavelengths. The concatenated LPFGs were simulated by using a transfer-matrix method based on a discrete coupling model, and were fabricated by a point-by-point arc discharge technique on the basis of the simulation results. It was demonstrated that the rejection bandwidth at 20-dB attenuation reached 26.6,nm and was 2.7 times broader than that of a single uniform LPFG.
Yu PENG Shouyi YIN Leibo LIU Shaojun WEI
Coarse-grained Reconfigurable Architecture (CGRA) is a promising mobile computing platform that provides both high performance and high energy efficiency. In an application, loop nests are usually mapped onto CGRA for further acceleration, so optimizing the mapping is an important goal for design of CGRAs. Moreover, obviously almost all of mobile devices are powered by batteries, how to reduce energy consumption also becomes one of primary concerns in using CGRAs. This paper makes three contributions: a) Proposing an energy consumption model for CGRA; b) Formulating loop nests mapping problem to minimize the battery charge loss; c) Extract an efficient heuristic algorithm called BPMap. Experiment results on most kernels of the benchmarks and real-life applications show that our methods can improve the performance of the kernels and lower the energy consumption.
Mingzhe RONG Tianhui LI Xiaohua WANG Dingxin LIU Anxue ZHANG
When ultra-high-frequency (UHF) method is applied in partial discharge (PD) detection for GIS, the propagation process and rules of electromagnetic (EM) wave need to be understood clearly for conducting diagnosis and assessment about the real insulation status. The preceding researches are mainly concerning about the radial component of the UHF signal, but the propagation of the signal components in axial and radial directions and that perpendicular to the radial direction of the GIS tank are rarely considered. So in this paper, for a 252,kV GIS with T-shaped structure (TS), the propagation and attenuation of PD-induced EM wave in different circumferential angles and directions are investigated profoundly in time and frequency domain based on Finite Difference Time Domain (FDTD) method. The attenuation rules of the peak to peak value (Vpp) and cumulative energy are concluded. By comparing the results of straight branch and T branch, the influence of T-shaped structure over the propagation of different signal components are summarized. Moreover, the new circumferential and axial location methods proposed in the previous work are verified to be still applicable. This paper discusses the propagation mechanism of UHF signal in T-shaped tank, which provides some referential significance towards the utilization of UHF technique and better implementation of PD detection.
Silver electrical contacts are separated at a constant speed and break arcs are generated in a DC300V-450V/10A resistive circuit. The transverse magnetic field formed by a permanent magnet is applied to the break arcs. Alumina pipes are placed around the contacts to restrict the motion of break arcs. The dependences of the arc lengthening time and arc length just before arc extinction L on the strength of the magnetic field and supply voltage are investigated. It was found that the arc lengthening time increases with increasing supply voltage E and tends to decrease when the magnetic flux density Bx is increased. The arc length just before arc extinction L increases with increasing E and decreasing Bx. It also increases linearly with increasing arc lengthening time tm when no reignitions occur.
Hiroshi KIKUCHI Satoru YOSHIDA Takeshi MORIMOTO Tomoo USHIO Zenichiro KAWASAKI
We examine the relationship between 116 VHF sensor events recorded by the VHF sensor on the Maido-1 satellite and lightning strokes detected by the World Wide Lightning Location Network (WWLLN) to show that most of the VHF sensor events were caused by lightning discharges. For each VHF sensor event, the WWLLN events within 1400 km from the subsatellite point and within 1 sec, 30 sec, and 300 sec of the VHF sensor trigger time are analyzed. We find that the coincidence rates in the North and South American continents, and in Southeast/East Asia and the Australian continent are greater than 0.90. Those in the African and European continents, and in the Pacific and Atlantic Oceans are less than 0.61. These high enough coincidence rates indicate that the VHF sensor events were emitted from lightning, although the coincidence rates in the other regions are quite low because of the low detection efficiency of the WWLLN in the regions. We also focus on 6 coincident events measured by both the VHF sensor and the WWLLN. The incidence angles of the EM waves for the VHF sensor are estimated from the group delay characteristics of the recorded EM waveforms. Compared with the WWLLN lightning locations, the two incidence angles are temporally and spatially coincident. These results indicate that a large fraction of the VHF sensor events are emitted by lightning discharges.
Masao MASUGI Norihito HIRASAWA Yoshiharu AKIYAMA Kazuo MURAKAWA
To clarify the characteristics of high-speed electrostatic discharge (ESD) events, we use two kinds of discharge electrodes: sphere- and cylinder-shape ones. We measure the energy level of ESD waveforms with charging voltages of 0.25, 0.5, and 1.0 kV. We find that the cylindrical electrode yields higher high-speed ESD energies, especially when the charging voltage is high; this indicates that the discharge gap shape is an important factor in ESD events.
Masao MASUGI Norihito HIRASAWA Yoshiharu AKIYAMA Kazuo MURAKAWA
This paper observes electrostatic discharge (ESD) events in terms of electromagnetic interference (EMI) assessments. To characterize the high frequency oscillations present in ESD waveforms, we use two kinds of discharge electrodes: copper and stainless steel spheres. Based on data gathered under charging voltages of 0.25, 0.5, and 1.0 kV, we examine the energy levels of ESD waveforms. As a result, we find that the high-frequency energy, which is related to the high frequency oscillations in the ESD waveform, was affected by the material of discharge electrodes and the fast movement of discharge electrodes.
Yasuhiro YAMAUCHI Yusuke FUKUI Yosuke HONDA Michiko OKAFUJI Masahiro SAKAI Mikihiko NISHITANI Yasushi YAMAUCHI
The discharge properties and chemical surface stability of CeO2 containing Sr (CeSrO) as the candidate for high-γ protective layer of noble plasma display panels (PDPs) are characterized. CeSrO films have superior chemical stability, because of the decrease in reactiveness on surface due to their fluorite structure. The discharge voltage is 50 V lower than that of MgO films for a pure discharge gas of Ne/Xe = 85/15 at 60 kPa. However the topmost surface, monolayer, of the CeSrO film relevant to the discharge property is hardly recovered from the damage by CO2 impurity in discharge gas. We can expect that by pumping down to a sufficiently low CO2 partial pressure (lower than 1 10-3 Pa), PDP panels with very high efficiency are realized with CeSrO protective layer.
Hitoshi ONO Junya SEKIKAWA Takayoshi KUBONO
Silver electrical contacts are separated at constant speed and break arcs are generated in a DC100 V–450 V/10 A resistive circuit. The transverse magnetic field of a permanent magnet is applied to the break arcs. Dependences of the arc duration, arc dwell time and arc lengthening time on the strength of the magnetic field and supply voltage are investigated. The characteristics of the re-ignition of the break arc are also discussed. Following results are shown. The arc duration D is increased due to the increase of the arc lengthening time tm when the supply voltage E is increased for each magnetic flux density Bx, because the arc dwell time ts is almost constant. The arc duration D is increased due to the increase of both of the arc lengthening time tm and the arc dwell time ts when the magnetic flux density Bx is decreased. The arc lengthening time tended to become long when the re-ignition of the break arc is occurred. The lengthening time tends to become longer when the duration tm1 from the start of the arc lengthening to the start of the re-ignition is increased. Re-ignitions occurred frequently when the magnetic flux density of the transverse magnetic field is increased and the supply voltage is increased.
Kazuaki MIYANAGA Yoshiki KAYANO Hiroshi INOUE
The circuit switching device by the electrical contact needs the high reliability and long lifetime. The very important factor for the high reliability, long lifetime and electromagnetic noise of the electrical contact is to suppress the duration and electromagnetic noise of arc discharge. Usually, the suppression of arc duration method is applying the external magnetic field. But, this method was not able to suppress the metallic arc duration and increased the voltage fluctuation at arc duration. Therefore, the new method for suppressing the duration and noise for electrical contact is expected. In this paper, a new method for suppressing duration and EM noise of arc discharge by applying housing pressure is proposed. To investigate the availability of proposed method, the measurement and some considerations on arc duration, voltage-fluctuation and current noise up to GHz frequency band generated by breaking contact in the applied pressure relay housing are reported. Firstly, voltage waveform and duration of the arc are measured. The effects of the pressure in the relay housing on the duration of the metallic and gaseous phase arcs are discussed. Secondary, voltage fluctuation, the spectrogram of contact voltage and current noise up to GHz frequency band are discussed. In the results, the proposed method with applying pressure makes shorter both durations of metallic and gaseous phases. The shorter duration of metallic phase is an advantage of the proposed method beyond the applying external magnetic field. As the housing pressure is increase, the voltage fluctuation and current noise becomes smalls. The proposed method can suppress the voltage fluctuation as well as arc duration. Consequently, the proposed method is on of the good solution to suppress the duration and electromagnetic noise of the arc discharge from electrical contact and result of this study indicates the basic considerations necessary to ensure good lifetime and EMC designs for electrical contacts.
Kimikazu SANO Munehiko NAGATANI Miwa MUTOH Koichi MURATA
This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000 V for power supply terminals, ±200 V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7 pA/ averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9 GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.
Bhum Jae SHIN Hyung Dal PARK Heung-Sik TAE
In order to improve the address discharge characteristics, we propose the modified selective reset waveform utilizing the address-bias voltage (Va-bias) during the ramp-up period. It is revealed that the proper Va-bias makes the weak discharge between the address and scan electrodes which plays a role in sufficiently removing the wall charge, thereby contributing to minimizing the wall-voltage variation during the address-period. As a result of adopting the Va-bias in the conventional selective reset driving waveform, it was found that the address discharge delay time can be shortened by approximately 40 ns and the address period of each subfield can be significantly reduced by about 43 µs.
In order to study the influences of contact opening speeds on arc extinction gap length characteristics, Ag contacts were operated to break DC inductive load currents from 0.1 A to 2.0 A at 14 V with contact opening speeds of 0.5 mm/s, 1 mm/s, 2 mm/s, 5 mm/s and 10 mm/s in a switching mechanism employing a stepping motor, and arc voltage waveforms were observed at each opening of the contacts. From the results, the average arc durations were determined at each current level under the respective contact opening speeds, and the average arc extinction gap lengths were calculated by multiplying the average arc duration value and the contact opening speed value. It was found that average arc durations showed no significant differences with increasing contact opening speeds. Thus, arc extinction gaps became larger at faster opening speeds in the inductive load conditions of this study.
Joon-Yub KIM Yeon Tae JEONG Byung-Gwon CHO
The address discharge characteristics formed when an address pulse is applied in AC plasma display panels are investigated by changing the ramp-down voltage during the reset period. The address discharge time lag can be reduced when the difference between the ramp-down voltage and the scan-low voltage is set at a high value during the ramp-down period because the loss of the wall charges accumulated between the scan (Y) and address (A) electrodes during the reset period is minimized. In addition, the voltage applied to the X electrode during the ramp-down period can prevent the voltage margin from reduction even though applying high voltage difference on the Y electrodes.
Jae-Young PARK Dae-Woo KIM Young-Sang SON Jong-Kyu SONG Chang-Soo JANG Won-Young JUNG
A novel NMOS Electrostatic Discharge (ESD) clamp circuit is proposed for a 0.35 µm Bipolar-CMOS-DMOS (BCD) process. The proposed ESD clamp has a non-snapback characteristic because of gate-coupled effect. This proposed ESD clamp circuit is developed without additional components made possible by replacing a capacitor with an isolated parasitic capacitor. The result of the proposed ESD clamp circuit is measured by 100 ns Transmission Line Pulse (TLP) system. From the measurement, it was observed that the proposed ESD clamp has approximately 40% lower triggering voltage compared to the conventional gate-grounded NMOS ESD clamp. This is achieved without degradation of the other ESD design key parameter. The proposed ESD clamp also has high robustness characteristics compared to the conventional RC-triggered NMOS ESD clamp circuit.
Junya SEKIKAWA Takayoshi KUBONO
Break arcs are generated between electrical contacts in a DC 42 V resistive circuit. Contact materials are Ag/SnO2 and Ag/ZnO. Circuit current when contacts are closed is varied from 5 A to 21 A. The radial magnetic field to drive break arcs is formed between the contact gap with a permanent magnet embedded in the cathode. The arc motion is observed with a high-speed camera. Experimental results with the magnet are compared with those without the magnet. Following results are shown. Similar experimental results to pure silver contacts are obtained for Ag/SnO2 and Ag/ZnO contact pairs. The rotational motion of the break arcs and the shortening effect of the arc duration are confirmed. The ring-shaped, wide and uniform traces are observed on the contact surfaces after break operations. This result shows the prevention effect of local erosion of electrical contacts and the reduction of total amount of contact erosion. The rotational frequency f is increased with the increase of the arc current Iarc. These results for Ag/SnO2 and Ag/ZnO contact pairs are similar to the results for pure silver contacts in our previous experiments. The rotational frequency of the break arc for the Ag/SnO2 and Ag/ZnO contacts is lower than that for the pure silver contacts.
Hiroshi KIKUCHI Takeshi MORIMOTO Tomoo USHIO Zen KAWASAKI
Maido-1 satellite was launched on 23 January 2009. The satellite carries the radio-frequency payload, Broadband Measurement of Waveform for VHF Lightning Impulses (VHF sensor), for research on lightning discharges. The final goal of our research is to locate sources of impulsive VHF radiation from lightning discharges and constantly monitor lightning activity from space. Maido-1 satellite has the aim of proving the functions of the sensor in space and to study the radio propagation characteristics of the ionosphere. Through the operation/observation for 5 months, more than 10,000 VHF signals have been recorded. The locations where VHF signals are detected and the examples of the received waveforms are presented in this paper. We discuss the regional dependency of the received signals.
In order to quickly discharge the electrostatic discharge (ESD) energy, an unassisted low-voltage-trigger ESD protection structure is proposed in this work. Under transmission line pulsing (TLP) stress, the trigger voltage, turn-on speed and second breakdown current can be obviously improved, as compared with the traditional protection structure. Moreover there is no need to add any extra mask or do any process modification for the new structure. The proposed structure has been verified in foundry's 0.18-µm CMOS process.
Electrostatic discharge (ESD) events due to metal objects electrified with low voltages give a fatal electromagnetic interference to high-tech information equipment. In order to elucidate the mechanism, with a 6-GHz digital oscilloscope, we previously measured the discharge current due to collision of a hand-held metal piece from a charged human body, and gave a current calculation model. In this study, based on the calculation model, a method was presented for deriving a gap potential gradient from the measured discharge current. Measurements of the discharge currents were made for charge voltages from 200 V to 1000 V. The corresponding potential gradients were estimated, which were validated in comparison with an empirical formula based on the Paschen's law together with other researcher's experimental results.