The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dual(419hit)

241-260hit(419hit)

  • Low Insertion-Loss, and Wideband Dual-Mode Bandpass Filters with Dual Perturbation Elements

    Shih-Bin JHONG  Min-Hang WENG  Sean WU  Cheng-Yuan HUNG  Maw-Shung LEE  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:1
      Page(s):
    117-119

    A novel low insertion-loss and wideband microstrip bandpass filter has been designed and tested. The basic configuration of this novel dual-mode filter is a square ring resonator with direct-connected orthogonal feed lines, and dual-perturbation elements are introduced within the resonator at symmetrical location. The effects of the size of the perturbation element are studied. A new filter having wider bandwidth and transmission zeros are presented. The proposed filter responses are in good agreement with the simulations and experiments.

  • Security Evaluations of MRSL and DRSL Considering Signal Delays

    Minoru SAEKI  Daisuke SUZUKI  

     
    PAPER-Side Channel Attacks

      Vol:
    E91-A No:1
      Page(s):
    176-183

    In recent years, some countermeasures have been proposed against differential power analysis (DPA) at the basic composition element level of logic circuits. We propose a countermeasure named random switching logic (RSL). RSL involves computation with data masking using a single logic gate and suppression of transient transitions using ENABLE signals generated independently of input data. Recently, some countermeasures that were proposed against DPA, such as MRSL and DRSL, adopted the concept of RSL. Although MRSL is based on RSL, it uses a different method to suppress the transient transitions. DRSL uses RSL to avoid the possibility of leakage caused by a difference in delays occurring in MDPL that combines dual-rail circuits with random masking. The important difference between these countermeasures and RSL is that they can vary the output transition timing depending on the input data patterns. In this paper, we focus on this feature to evaluate the DPA resistance of MRSL and DRSL. Experiments are also conducted on DPA resistance by using an FPGA to verify the evaluation results. It is confirmed that in both MRSL and DRSL, there is a possibility of leakage if a sufficient difference in delays exists in input signals.

  • New Hardware Architecture for Multiplication over GF(2m) and Comparisons with Normal and Polynomial Basis Multipliers for Elliptic Curve Cryptography

    Soonhak KWON  Taekyoung KWON  Young-Ho PARK  

     
    PAPER-Implementation

      Vol:
    E91-A No:1
      Page(s):
    236-243

    We propose a new linear array for multiplication in GF(2m) which outperforms most of the existing linear multipliers in terms of the area and time complexity. Moreover we will give a very detailed comparison of our array with other existing architectures for the five binary fields GF(2m), m=163,233,283,409,571, recommended by NIST for elliptic curve cryptography.

  • Structure Learning of Bayesian Networks Using Dual Genetic Algorithm

    Jaehun LEE  Wooyong CHUNG  Euntai KIM  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E91-D No:1
      Page(s):
    32-43

    A new structure learning approach for Bayesian networks (BNs) based on dual genetic algorithm (DGA) is proposed in this paper. An individual of the population is represented as a dual chromosome composed of two chromosomes. The first chromosome represents the ordering among the BN nodes and the second represents the conditional dependencies among the ordered BN nodes. It is rigorously shown that there is no BN structure that cannot be encoded by the proposed dual genetic encoding and the proposed encoding explores the entire solution space of the BN structures. In contrast with existing GA-based structure learning methods, the proposed method learns not only the topology of the BN nodes, but also the ordering among the BN nodes, thereby, exploring the wider solution space of a given problem than the existing method. The dual genetic operators are closed in the set of the admissible individuals. The proposed method is applied to real-world and benchmark applications, while its effectiveness is demonstrated through computer simulation.

  • Dual Priority Scheduling Based on Power Adjustment Context Switching for Ubiquitous Sensor Network

    Dong-Sun KIM  Taeo HWANG  Seung-Yerl LEE  Kwang-Ho WON  Byung-Soo KIM  Seong-Dong KIM  Duck-Jin CHUNG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3419-3425

    The Ubiquitous sensor network (USN) node is required to operate for several months with limited system resources such as memory and power. The typical USN node is in the active state for less than 1% of its several month lifetime and waits in the inactive state for the remaining 99% of its lifetime. This paper suggests a power adjustment dual priority scheduler (PA-DPS) that offers low power consumption while meeting the USN requirements by estimating power consumption in the USN node. PA-DPS has been designed based on the event-driven approach and the dual-priority scheduling structure, which has been conventionally suggested in the real-time system field. From experimental results, PA-DPS reduced the inactive mode current up to 40% under the 1% duty cycle.

  • Speech Enhancement Based on Perceptually Comfortable Residual Noise

    Jong Won SHIN  Joon-Hyuk CHANG  Nam Soo KIM  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E90-B No:11
      Page(s):
    3323-3326

    In this letter, we propose a novel approach to speech enhancement, which incorporates a new criterion based on residual noise shaping. In the proposed approach, our goal is to make the residual noise perceptually comfortable instead of making it less audible. A predetermined `comfort noise' is provided as a target for the spectral shaping. Based on some assumptions, the resulting spectral gain function turns out to be a slight modification of the Wiener filter while requiring very low computational complexity. Subjective listening test shows that the proposed algorithm outperforms the conventional spectral enhancement technique based on soft decision and the noise suppression implemented in IS-893 Selectable Mode Vocoder.

  • A Dual-Channel MAC Protocol with Directional Antennas for Mobile Ad-Hoc Networks

    Chang-Nam KANG  Doo-Yeong YANG  Jeong-Woo JWA  

     
    LETTER-Network

      Vol:
    E90-B No:11
      Page(s):
    3266-3270

    The directional MAC protocols improve spatial reuse, but require the exact location of destination and have the problem of deafness. In this paper, we propose a dual-channel MAC protocol with directional antennas for mobile ad-hoc networks. In the proposed MAC protocol, RTS/CTS are sent omnidirectionally as nodes do not have the exact location of the destination in mobile environments. Omnidirectional transmissions on control channel overcome deafness, but have low spatial reuse. We propose a new blocking algorithm to improve spatial reuse on control channel. We use the negative CTS (NCTS) to solve the exposed terminal problem. We confirm throughput of the proposed MAC protocol by simulations using Qualnet ver. 3.8 simulator.

  • Stacked Rectangular Microstrip Antenna with a Shorting Plate for Dual Band (VICS/ETC) Operation in ITS

    Takafumi FUJIMOTO  Kazumasa TANAKA  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:11
      Page(s):
    3307-3310

    A stacked rectangular microstrip antenna with a shorting plate is proposed as a car antenna for dual band (VICS and ETC) operation in the ITS. The proposed antenna has the proper radiation patterns for the VICS and ETC. The antenna is small in size and effective in dual band operation.

  • Generalized Predictive Control in Fast-Rate Single-Rate and Dual-Rate Systems

    Takao SATO  Akira INOUE  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:11
      Page(s):
    2616-2619

    This paper discusses design of Generalized Predictive Control (GPC) scheme. GPC is designed in two cases; the first is a dual-rate (DR) system, where the sampling interval of a plant output is an integer multiple of the holding interval of a control input, and the second is a fast-rate single-rate (FR-SR) system, where both the holding and sampling intervals are equal to the holding interval of the DR system. Furthermore, the relation between them is investigated, and this study gives the conditions that FR-SR and DR GPC become equivalent. To this end, a future reference trajectory of DR GPC is rewritten, and a future predictive output of the FR-SR GPC is rearranged.

  • A Dual-Band Comb-Line Filter Using a Half-Wavelength Stripline Nesting a Quarter-Wavelength Coplanar Waveguide Resonator

    Shoichi KITAZAWA  Masahiro GESHIRO  Kenta ISHIMARU  Masaharu OHASHI  Hideaki FUJIMOTO  Kouji WADA  

     
    PAPER-Electromagnetics

      Vol:
    E90-B No:9
      Page(s):
    2439-2446

    This paper presents a novel dual-band comb-line filter using a pair of hybrid resonators. The resonator consists of a half-wavelength stripline resonator short-circuited at both ends and a quarter-wavelength resonator of coplanar waveguide that is nested in the half-wavelength resonator. Numerical calculations by an electromagnetic simulator clarify the characteristics of dual-frequency resonance of the hybrid resonator when the structural parameters are changed. The surface current density on the resonator is also investigated at the resonant frequencies. A typical model of the resonator is fabricated and its resonance frequency characteristics are measured.

  • Innovative Antennas and Propagation Studies for MIMO Systems Open Access

    Yoshio KARASAWA  

     
    INVITED PAPER

      Vol:
    E90-B No:9
      Page(s):
    2194-2202

    This paper reviews our recent antennas and propagation studies for MIMO systems. First we introduce a MIMO propagation channel model in which an interesting nature can be found in eigenvalue statistics from a practical viewpoint. Then we introduce multi-keyhole model which is an efficient tool for designing a MIMO repeater systems, or MIMO radio-relay systems. For realization of compact MIMO antenna systems, effectiveness of using multiple polarizations such as dual polarizations and triple polarizations is demonstrated in multipath-rich propagation environments. With application of MIMO to OFDM systems, we focus our analysis on relation between propagation and digital transmission characteristics under a severe multipath-rich environment where the delay profile exceeds the guard interval. Finally, we discuss transmission characteristics of MIMO-OFDM with maximal ratio combining (MRC) diversity in the environment.

  • A Dual-Mode Bluetooth Transceiver with a Two-Point-Modulated Polar-Loop Transmitter and a Frequency-Offset-Compensated Receiver

    Takashi OSHIMA  Masaru KOKUBO  

     
    PAPER-Circuit Theory

      Vol:
    E90-A No:8
      Page(s):
    1669-1678

    An entire dual-mode transceiver capable of both the conventional GFSK-modulated Bluetooth and the Medium-Rate π/4-DQPSK-modulated Bluetooth has been investigated and reported. The transmitter introduces a novel two-point-modulated polar-loop technique without the global feedback to realize reduced power consumption, small chip area and also high modulation accuracy. The receiver shares all the circuits for both operating modes except the demodulators and also features a newly-proposed cancellation technique of the carrier-frequency offset. The transceiver has been confirmed by system or circuit simulations to meet all the dual-mode Bluetooth specifications. The simulation results show that the transmitting power can be larger than 10 dBm while achieving the total power efficiency above 30% and also RMS DEVM of 0.050. It was also confirmed by simulation that the receiver is expected to attain the sensitivity of -85 dBm in both modes while satisfying the image-rejection and the blocker-suppression specifications. The proposed transceiver will provide a low-cost, low-power single-chip RF-IC solution for the next-generation Bluetooth communication.

  • Robust F0 Estimation Based on Complex LPC Analysis for IRS Filtered Noisy Speech

    Keiichi FUNAKI  Tatsuhiko KINJO  

     
    PAPER

      Vol:
    E90-A No:8
      Page(s):
    1579-1586

    This paper proposes a novel robust fundamental frequency (F0) estimation algorithm based on complex-valued speech analysis for an analytic speech signal. Since analytic signal provides spectra only over positive frequencies, spectra can be accurately estimated in low frequencies. Consequently, it is considered that F0 estimation using the residual signal extracted by complex-valued speech analysis can perform better for F0 estimation than that for the residual signal extracted by conventional real-valued LPC analysis. In this paper, the autocorrelation function weighted by AMDF is adopted for the F0 estimation criterion and four signals; speech signal, analytic speech signal, LPC residual and complex LPC residual, are evaluated for the F0 estimation. Speech signals used in the experiments were an IRS filtered speech corrupted by adding white Gaussian noise or Pink noise whose noise levels are 10, 5, 0, -5 [dB]. The experimental results demonstrate that the proposed algorithm based on complex LPC residual can perform better than other methods in noisy environment.

  • Adaptive Hybrid Genetic Algorithm Parallel Interference Cancellation High Rate Multi-User Detection for Dual Rate W-CDMA Mobile Communications

    Liangfang NI  Sidan DU  Baoyu ZHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1692-1706

    Adaptive hybrid genetic algorithm concatenated with improved parallel interference cancellation, i.e. adaptive hybrid genetic algorithm parallel interference cancellation (AHGAPIC) was proposed. A study is conducted on the application of AHGAPIC to soft decoding high rate multi-user detection with diversity reception for dual-rate wideband DS-CDMA spread spectrum communications, aiming to mitigate the effect of multiple access interference. The relevant research has revealed that the local search capability of hybrid genetic algorithm (HGA) is still not good enough. Therefore, first, two evolutionary operations, i.e. inversion and insertion are merged into HGA to constitute a novel algorithm. With its moderate local search capability, this new algorithm can search for the global optimum region according to the information entropy, and then it is made adaptively vary its probabilities of crossover and mutation depending on the fitness values of the solutions to form the adaptive hybrid genetic algorithm (AHGA). Second, AHGA is utilized to effectively identify the better and better binary string to maximize the log-likelihood function of dual-rate multi-user detection. As AHGA converges to the optimum region, the control factor of the improved parallel interference cancellation (IPIC) detector is set to be the ratio of the average fitness value to the maximum fitness value of the population of AHGA. Finally, equipped with both the control factor and the binary string with the maximum fitness value as the initial data, the IPIC detector can rapidly find out the approximately optimum soft decoding vector. Then, it can obtain the approximately global optimum estimate point on the basis of the soft decoding rule, corresponding to the transmitted data bits. A lower bound of computational complexity has been achieved through simulations and qualitative analyses. The property of the proposed algorithm to converge rapidly leads to lower computational complexity. Emulation results have shown that the AHGAPIC soft decoding high rate multi-user detector is superior to other suboptimum detectors considered in this paper in terms of two points. They are the mitigation of multiple access interference and the resistance to near-far effects. Its performance is close to the sequential group optimum multi-user detector but with a shorter time delay.

  • Influence of Residual Stress on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings by Heating

    Katsumi MORISHITA  Akihiro KAINO  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:6
      Page(s):
    1318-1323

    Long-period gratings (LPGs) are written in the fibers un-preheated and preheated. The influence of residual stress on trimming resonance wavelengths by heating the LPGs is investigated comparing the post-heating changes of the transmission characteristics. It becomes evident that the residual stress relaxation shifts resonance wavelengths to shorter wavelengths quickly and the glass structure modification moves them to longer wavelengths slowly. The relaxation rate of the glass structure drops rapidly with the decrease in heating temperature, and the influence of the residual stress relaxation appears more strongly at the early stage of heating at a lower temperature. The trimming wavelength range can be broadened on the short wavelength side by decreasing the heating temperature. We could adjust resonance wavelengths without significant peak loss changes by the residual stress relaxation before writing LPGs, though the trimming range becomes narrow.

  • A Novel Power MOSFET Structure with Shallow Junction Dual Well Design

    Chien-Nan LIAO  Feng-Tso CHIEN  Chi-Ling WANG  Hsien-Chin CHIU  Yi-Jen CHAN  

     
    PAPER-Compound Semiconductor and Power Devices

      Vol:
    E90-C No:5
      Page(s):
    937-942

    Vertical Power MOSFETs are widely designed by deep well structures for breakdown requirement. In this study, we proposed, simulated, and analyzed a "shallow dual well" structure Power MOSFET, which utilize an n-well to cover the conventional p-well. The cell pitch can be reduced and results in an increased cell density. The reduced cell pitch and increased cell density improves the gate charge and on resistance performances about 66.5% and 15.8% without sacrificing the device breakdown owing to a shallow junction design. In addition, with the dual well structure design, the breakdown point will occur at the center of the well. Therefore, the capability of avalanche energy can be improved about 1.9 times than the tradition well structure.

  • Improvement of CCI and Residual Frequency Offset Compensation Using Feedback Phase Tracking in MIMO-OFDM Systems

    Naoto EGASHIRA  Hiroo TAKAYAMA  Takahiko SABA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    934-942

    In multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems, phase tracking schemes suffer from co-channel interference (CCI) and inter-carrier interference (ICI) caused by residual frequency offset. In this paper, we propose a residual frequency offset compensation scheme using feedback phase tracking to eliminate the effect of both ICI and CCI for MIMO-OFDM systems. The proposed phase tracking scheme estimates the amount of residual frequency offset in the frequency domain, and compensates for it in the time domain, periodically. Thus, the effect of ICI can be reduced. Furthermore, we consider two methods of channel estimation that enable the system to estimate the channel response several times within a packet to eliminate the effect of CCI. This is because the channel is generally estimated at the beginning of a packet, and this estimation is affected by residual frequency offset. First is the method that employs midambles. Second is the one that reuses the preamble. When the channel is estimated several times within a packet, the effect of CCI can be reduced. Simulation results show the proposed scheme can compensate for residual frequency offset and CCI more accurately than the conventional scheme, and improve the packet error rate (PER) performance.

  • Circularly Polarized Printed Antenna Combining Slots and Patch

    Toshimitsu TANAKA  Tamotsu HOUZEN  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:3
      Page(s):
    621-629

    In this paper, the authors propose a circularly polarized printed antenna combining a slot array antenna and a patch antenna, with dual-band operation. The proposed antenna has good isolation performance, is compact, and has simple configuration. This antenna is composed of two parts, a patch antenna (for Rx) on the top, and a slot array antenna (for Tx) on the bottom, respectively. The element layout is such that the lower radiation element is not hidden by the upper one for wide observation angle. Hence, both radiation elements can naturally radiate the targeted polarization. Both slot array and patch antenna are fed by electromagnetically coupled microstrip line feed. With such a configuration, it is possible to efficiently obtain good isolation characteristics for both frequency bands. Furthermore, this antenna can be easily composed and it is not necessary to use any feeding pin or via hole. The target of this antenna is mobile communications applications such as mobile satellite communications, base-station of wireless LAN, etc. Here, the design techniques are discussed and the numerical and experimental analyses are presented.

  • A Dual-Tone DMAC Protocol for Mobile Ad Hoc Networks

    Sang-Bo KO  Jeong-Woo JWA  

     
    LETTER-Network

      Vol:
    E90-B No:2
      Page(s):
    354-357

    Ad hoc DMAC protocols have been proposed to improve spatial reuse, but directional transmissions have the problem of deafness. In the ToneDMAC protocol [9], an omnidirectional out-of-band tone after transmitting DATA or ACK mitigates deafness, but cannot prevent the interference packets caused by retransmissions to node in deafness. In this paper, we propose a dual-tone DMAC protocol with the out-of-band start-tone and stop-tone. In the proposed MAC protocol, a start-tone prevents retransmissions to node in deafness and decreases the packet collision probability. Throughput performance of the proposed MAC protocol is confirmed by simulations using Qualnet ver. 3.8 simulator.

  • Universal Lossy Coding for Individual Sequences Based on Complexity Functions

    Shigeaki KUZUOKA  Tomohiko UYEMATSU  

     
    PAPER-Information Theory

      Vol:
    E90-A No:2
      Page(s):
    491-503

    This paper investigates the fixed-rate and fixed-distortion lossy coding problems of individual sequences subject to the subadditive distortion measure. The fixed-rate and fixed-distortion universal lossy coding schemes based on the complexity of the sequence are proposed. The obtained coding theorems reveal that the optimal distortion (resp. rate) attainable by the fixed-rate (resp. fixed-distortion) lossy coding is equal to the optimal average distortion (resp. rate) with respect to the overlapping empirical distribution of the given sequence. Some connections with the lossy coding problem of ergodic sources are also investigated.

241-260hit(419hit)