The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ions(1385hit)

1-20hit(1385hit)

  • A Novel 3D Non-Stationary Vehicle-to-Vehicle Channel Model with Circular Arc Motions Open Access

    Zixv SU  Wei CHEN  Yuanyuan YANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:9
      Page(s):
    607-619

    In this paper, a cluster-based three-dimensional (3D) non-stationary vehicle-to-vehicle (V2V) channel model with circular arc motions and antenna rotates is proposed. The channel model simulates the complex urban communication scenario where clusters move with arbitrary velocities and directions. A novel cluster evolution algorithm with time-array consistency is developed to capture the non-stationarity. For time evolution, the birth-and-death (BD) property of clusters including birth, death, and rebirth are taken into account. Additionally, a visibility region (VR) method is proposed for array evolution, which is verified to be applicable to circular motions. Based on the Taylor expansion formula, a detailed derivation of space-time correlation function (ST-CF) with circular arc motions is shown. Statistical properties including ST-CF, Doppler power spectrum density (PSD), quasi-stationary interval, instantaneous Doppler frequency, root mean square delay spread (RMS-DS), delay PSD, and angular PSD are derived and analyzed. According to the simulated results, the non-stationarity in time, space, delay, and angular domains is captured. The presented results show that motion modes including linear motions as well as circular motions, the dynamic property of the scattering environment, and the velocity of the vehicle all have significant impacts on the statistical properties.

  • International Competition on Graph Counting Algorithms 2023 Open Access

    Takeru INOUE  Norihito YASUDA  Hidetomo NABESHIMA  Masaaki NISHINO  Shuhei DENZUMI  Shin-ichi MINATO  

     
    INVITED PAPER-Algorithms and Data Structures

      Pubricized:
    2024/01/15
      Vol:
    E107-A No:9
      Page(s):
    1441-1451

    This paper reports on the details of the International Competition on Graph Counting Algorithms (ICGCA) held in 2023. The graph counting problem is to count the subgraphs satisfying specified constraints on a given graph. The problem belongs to #P-complete, a computationally tough class. Since many essential systems in modern society, e.g., infrastructure networks, are often represented as graphs, graph counting algorithms are a key technology to efficiently scan all the subgraphs representing the feasible states of the system. In the ICGCA, contestants were asked to count the paths on a graph under a length constraint. The benchmark set included 150 challenging instances, emphasizing graphs resembling infrastructure networks. Eleven solvers were submitted and ranked by the number of benchmarks correctly solved within a time limit. The winning solver, TLDC, was designed based on three fundamental approaches: backtracking search, dynamic programming, and model counting or #SAT (a counting version of Boolean satisfiability). Detailed analyses show that each approach has its own strengths, and one approach is unlikely to dominate the others. The codes and papers of the participating solvers are available: https://afsa.jp/icgca/.

  • Functional Decomposition of Symmetric Multiple-Valued Functions and Their Compact Representation in Decision Diagrams Open Access

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:8
      Page(s):
    922-929

    This paper proposes a decomposition method for symmetric multiple-valued functions. It decomposes a given symmetric multiple-valued function into three parts. By using suitable decision diagrams for the three parts, we can represent symmetric multiple-valued functions compactly. By deriving theorems on sizes of the decision diagrams, this paper shows that space complexity of the proposed representation is low. This paper also presents algorithms to construct the decision diagrams for symmetric multiple-valued functions with low time complexity. Experimental results show that the proposed method represents randomly generated symmetric multiple-valued functions more compactly than the conventional representation method using standard multiple-valued decision diagrams. Symmetric multiple-valued functions are a basic class of functions, and thus, their compact representation benefits many applications where they appear.

  • 10-Gbit/s Data Transmission Using 120-GHz-Band Contactless Communication with SRR Integrated Glass Substrate Open Access

    Tomohiro KUMAKI  Akihiko HIRATA  Tubasa SAIJO  Yuma KAWAMOTO  Tadao NAGATSUMA  Osamu KAGAYA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2024/02/08
      Vol:
    E107-C No:8
      Page(s):
    223-230

    We achieved 10-Gbit/s data transmission using a cutting-edge 120-GHz-band high-speed contactless communication technology, which allows seamless connection to a local area network (LAN) by simply placing devices on a desk. We propose a glass substrate-integrated rectangular waveguide that can control the permeability of the top surface to 120-GHz signals by contacting a dielectric substrate with the substrate. The top surface of the rectangular waveguide was replaced with a glass substrate on which split-ring resonators (SRRs) were integrated. The transmission loss of the waveguide with a glass substrate was 2.5 dB at 125 GHz. When a dielectric sheet with a line pattern formed on the contact surface was in contact with a glass substrate, the transmission loss from the waveguide to the dielectric sheet was 19.2 dB at 125 GHz. We achieved 10-Gbit/s data transmission by contacting a dielectric sheet to the SRR-integrated glass substrate.

  • Video Reflection Removal by Modified EDVR and 3D Convolution Open Access

    Sota MORIYAMA  Koichi ICHIGE  Yuichi HORI  Masayuki TACHI  

     
    LETTER-Image

      Pubricized:
    2023/12/11
      Vol:
    E107-A No:8
      Page(s):
    1430-1434

    In this paper, we propose a method for video reflection removal using a video restoration framework with enhanced deformable networks (EDVR). We examine the effect of each module in EDVR on video reflection removal and modify the models using 3D convolutions. The performance of each modified model is evaluated in terms of the RMSE between the structural similarity (SSIM) and the smoothed SSIM representing temporal consistency.

  • A New Construction of Three-Phase Z-Complementary Triads Based on Extended Boolean Functions Open Access

    Xiuping PENG  Yinna LIU  Hongbin LIN  

     
    LETTER-Information Theory

      Pubricized:
    2024/02/15
      Vol:
    E107-A No:8
      Page(s):
    1391-1394

    In this letter, we propose a novel direct construction of three-phase Z-complementary triads with flexible lengths and various widths of the zero-correlation zone based on extended Boolean functions. The maximum width ratio of the zero-correlation zone of the construction can reach 3/4. And the proposed sequences can exist for all lengths other than powers of three. We also investigate the peak-to-average power ratio properties of the proposed ZCTs.

  • Experimental Evaluations on Learning-Based Inter-Radar Wideband Interference Mitigation Method Open Access

    Ryoto KOIZUMI  Xiaoyan WANG  Masahiro UMEHIRA  Ran SUN  Shigeki TAKEDA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2024/01/11
      Vol:
    E107-A No:8
      Page(s):
    1255-1264

    In recent years, high-resolution 77 GHz band automotive radar, which is indispensable for autonomous driving, has been extensively investigated. In the future, as vehicle-mounted CS (chirp sequence) radars become more and more popular, intensive inter-radar wideband interference will become a serious problem, which results in undesired miss detection of targets. To address this problem, learning-based wideband interference mitigation method has been proposed, and its feasibility has been validated by simulations. In this paper, firstly we evaluated the trade-off between interference mitigation performance and model training time of the learning-based interference mitigation method in a simulation environment. Secondly, we conducted extensive inter-radar interference experiments by using multiple 77 GHz MIMO (Multiple-Input and Multiple-output) CS radars and collected real-world interference data. Finally, we compared the performance of learning-based interference mitigation method with existing algorithm-based methods by real experimental data in terms of SINR (signal to interference plus noise ratio) and MAPE (mean absolute percentage error).

  • Coin-Based Cryptographic Protocols without Hand Operations Open Access

    Yuta MINAMIKAWA  Kazumasa SHINAGAWA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/13
      Vol:
    E107-A No:8
      Page(s):
    1178-1185

    Secure computation is a kind of cryptographic techniques that enables to compute a function while keeping input data secret. Komano and Mizuki (International Journal of Information Security 2022) proposed a model of coin-based protocols, which are secure computation protocols using physical coins. They designed AND, XOR, and COPY protocols using so-called hand operations, which move coins from one player’s palm to the other palm. However, hand operations cannot be executed when all players’ hands are occupied. In this paper, we propose coin-based protocols without hand operations. In particular, we design a three-coin NOT protocol, a seven-coin AND protocol, a six-coin XOR protocol, and a five-coin COPY protocol without hand operations. Our protocols use random flips only as shuffle operations and are enough to compute any function since they have the same format of input and output, i.e., committed-format protocols.

  • Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv7-Tiny Open Access

    Min GAO  Gaohua CHEN  Jiaxin GU  Chunmei ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/03/19
      Vol:
    E107-D No:7
      Page(s):
    878-889

    Wearing a mask correctly is an effective method to prevent respiratory infectious diseases. Correct mask use is a reliable approach for preventing contagious respiratory infections. However, when dealing with mask-wearing in some complex settings, the detection accuracy still needs to be enhanced. The technique for mask-wearing detection based on YOLOv7-Tiny is enhanced in this research. Distribution Shifting Convolutions (DSConv) based on YOLOv7-tiny are used instead of the 3×3 convolution in the original model to simplify computation and increase detection precision. To decrease the loss of coordinate regression and enhance the detection performance, we adopt the loss function Intersection over Union with Minimum Points Distance (MPDIoU) instead of Complete Intersection over Union (CIoU) in the original model. The model is introduced with the GSConv and VoVGSCSP modules, recognizing the model’s mobility. The P6 detection layer has been designed to increase detection precision for tiny targets in challenging environments and decrease missed and false positive detection rates. The robustness of the model is increased further by creating and marking a mask-wearing data set in a multi environment that uses Mixup and Mosaic technologies for data augmentation. The efficiency of the model is validated in this research using comparison and ablation experiments on the mask dataset. The results demonstrate that when compared to YOLOv7-tiny, the precision of the enhanced detection algorithm is improved by 5.4%, Recall by 1.8%, mAP@.5 by 3%, mAP@.5:.95 by 1.7%, while the FLOPs is decreased by 8.5G. Therefore, the improved detection algorithm realizes more real-time and accurate mask-wearing detection tasks.

  • Research on the Switch Migration Strategy Based on Global Optimization Open Access

    Xiao’an BAO  Shifan ZHOU  Biao WU  Xiaomei TU  Yuting JIN  Qingqi ZHANG  Na ZHANG  

     
    PAPER-Information Network

      Pubricized:
    2024/03/25
      Vol:
    E107-D No:7
      Page(s):
    825-834

    With the popularization of software defined networks, switch migration as an important network management strategy has attracted increasing attention. Most existing switch migration strategies only consider local conditions and simple load thresholds, without fully considering the overall optimization and dynamics of the network. Therefore, this article proposes a switch migration algorithm based on global optimization. This algorithm adds a load prediction module to the migration model, determines the migration controller, and uses an improved whale optimization algorithm to determine the target controller and its surrounding controller set. Based on the load status of the controller and the traffic priority of the switch to be migrated, the optimal migration switch set is determined. The experimental results show that compared to existing schemes, the algorithm proposed in this paper improves the average flow processing efficiency by 15% to 40%, reduces switch migration times, and enhances the security of the controller.

  • RAN Slicing with Inter-Cell Interference Control and Link Adaptation for Reliable Wireless Communications Open Access

    Yoshinori TANAKA  Takashi DATEKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E107-B No:7
      Page(s):
    513-528

    Efficient multiplexing of ultra-reliable and low-latency communications (URLLC) and enhanced mobile broadband (eMBB) traffic, as well as ensuring the various reliability requirements of these traffic types in 5G wireless communications, is becoming increasingly important, particularly for vertical services. Interference management techniques, such as coordinated inter-cell scheduling, can enhance reliability in dense cell deployments. However, tight inter-cell coordination necessitates frequent information exchange between cells, which limits implementation. This paper introduces a novel RAN slicing framework based on centralized frequency-domain interference control per slice and link adaptation optimized for URLLC. The proposed framework does not require tight inter-cell coordination but can fulfill the requirements of both the decoding error probability and the delay violation probability of each packet flow. These controls are based on a power-law estimation of the lower tail distribution of a measured data set with a smaller number of discrete samples. As design guidelines, we derived a theoretical minimum radio resource size of a slice to guarantee the delay violation probability requirement. Simulation results demonstrate that the proposed RAN slicing framework can achieve the reliability targets of the URLLC slice while improving the spectrum efficiency of the eMBB slice in a well-balanced manner compared to other evaluated benchmarks.

  • Development of Tunnel Magneto-Resistive Sensors Open Access

    Mikihiko OOGANE  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    171-175

    The magnetic field resolution of the tunnel magneto-resistive (TMR) sensors has been improving and it reaches below 1.0 pT/Hz0.5 at low frequency. The real-time measurement of the magnetocardiography (MCG) and the measurement of the magnetoencephalography (MEG) have been demonstrated by developed TMR sensors. Although the MCG and MEG have been applied to diagnosis of diseases, the conventional MCG/MEG system using superconducting quantum interference devices (SQUIDs) cannot measure the signal by touching the body, the body must be fixed, and maintenance costs are huge. The MCG/MEG system with TMR sensors operating at room temperature have the potential to solve these problems. In addition, it has the great advantage that it does not require a special magnetic shielded room. Further developments are expected to progress to maximize these unique features of TMR sensors.

  • 300-GHz-Band Dual-Band Bandstop Filter Based on Two Different Sized Split Ring Resonators Open Access

    Akihiko HIRATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:4
      Page(s):
    107-114

    For 6G mobile communications, it is important to realize a 300 GHz band bandpass filter that fits the occupied bandwidth of wireless communication system to prevent inter-system interference. This paper presents the design of a 300-GHz-band dual-band bandstop filter composed of two types of different sized split ring resonator (SRR) unit cells. The SRR unit cells are formed by a 5-μm-thick gold pattern on a 200-μm-thick quartz substrate. When two different-sized SRR unit cells are placed alternately on the same quartz substrate and the SRR unit cell size is over 260 μm, the stopbands of the dual-band bandstop filter are almost the same as those of the bandstop filter, which is composed of a single SRR unit cell. The insertion loss of the dual-band bandstop filter at 297.4 GHz is 1.8 dB and the 3-dB passband becomes 16.0 GHz (290.4-306.4 GHz). The attenuation in the two stopbands is greater than 20 dB. Six types of dual-band bandstop filters with different arrangement and different distance between SRR unit cells are prototyped, and the effect of the distance and arrangement between different sized SRR unit cells on the transmission characteristics of dual-band bandstop filters were clarified.

  • Generic Construction of Public-Key Authenticated Encryption with Keyword Search Revisited

    Keita EMURA  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-A No:3
      Page(s):
    260-274

    Public key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender's secret key is required for encryption, and a trapdoor is associated with not only a keyword but also the sender. This setting allows us to prevent information leakage of keyword from trapdoors. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper, we propose a new generic construction of PAEKS, which is more efficient than Liu et al.'s in the sense that we only use one SPHF, but Liu et al. used two SPHFs. In addition, for consistency we considered a security model that is stronger than Liu et al.'s. Briefly, Liu et al. considered only keywords even though a trapdoor is associated with not only a keyword but also a sender. Thus, a trapdoor associated with a sender should not work against ciphertexts generated by the secret key of another sender, even if the same keyword is associated. That is, in the previous definitions, there is room for a ciphertext to be searchable even though the sender was not specified when the trapdoor is generated, that violates the authenticity of PAKES. Our consistency definition considers a multi-sender setting and captures this case. In addition, for indistinguishability against chosen keyword attack (IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight several issues associated with the Liu et al. construction in terms of hash functions, e.g., their construction does not satisfy the consistency that they claimed to hold.

  • Graph Linear Notations with Regular Expressions

    Ren MIMURA  Kengo MIYAMOTO  Akio FUJIYOSHI  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-D No:3
      Page(s):
    312-319

    This paper proposes graph linear notations and an extension of them with regular expressions. Graph linear notations are a set of strings to represent labeled general graphs. They are extended with regular expressions to represent sets of graphs by specifying chosen parts for selections and repetitions of certain induced subgraphs. Methods for the conversion between graph linear notations and labeled general graphs are shown. The NP-completeness of the membership problem for graph regular expressions is proved.

  • Uniaxially Symmetrical T-Junction OMT with 45° -Tilted Branch Waveguide Ports

    Hidenori YUKAWA  Yu USHIJIMA  Toru TAKAHASHI  Toru FUKASAWA  Yoshio INASAWA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    57-65

    A T-junction orthomode transducer (OMT) is a waveguide component that separates two orthogonal linear polarizations in the same frequency band. It has a common circular waveguide short-circuited at one end and two branch rectangular waveguides arranged in opposite directions near the short circuit. One of the advantages of a T-junction OMT is its short axial length. However, the two rectangular ports, which need to be orthogonal, have different levels of performance because of asymmetry. We therefore propose a uniaxially symmetrical T-junction OMT, which is configured such that the two branch waveguides are tilted 45° to the short circuit. The uniaxially symmetrical configuration enables same levels of performance for the two ports, and its impedance matching is easier compared to that for the conventional configuration. The polarization separation principle can be explained using the principles of orthomode junction (OMJ) and turnstile OMT. Based on calculations, the proposed configuration demonstrated a return loss of 25dB, XPD of 30dB, isolation of 21dB between the two branch ports, and loss of 0.25dB, with a bandwidth of 15% in the K band. The OMT was then fabricated as a single piece via 3D printing and evaluated against the calculated performance indices.

  • Semantic Relationship-Based Unsupervised Representation Learning of Multivariate Time Series

    Chengyang YE  Qiang MA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/11/16
      Vol:
    E107-D No:2
      Page(s):
    191-200

    Representation learning is a crucial and complex task for multivariate time series data analysis, with a wide range of applications including trend analysis, time series data search, and forecasting. In practice, unsupervised learning is strongly preferred owing to sparse labeling. However, most existing studies focus on the representation of individual subseries without considering relationships between different subseries. In certain scenarios, this may lead to downstream task failures. Here, an unsupervised representation learning model is proposed for multivariate time series that considers the semantic relationship among subseries of time series. Specifically, the covariance calculated by the Gaussian process (GP) is introduced to the self-attention mechanism, capturing relationship features of the subseries. Additionally, a novel unsupervised method is designed to learn the representation of multivariate time series. To address the challenges of variable lengths of input subseries, a temporal pyramid pooling (TPP) method is applied to construct input vectors with equal length. The experimental results show that our model has substantial advantages compared with other representation learning models. We conducted experiments on the proposed algorithm and baseline algorithms in two downstream tasks: classification and retrieval. In classification task, the proposed model demonstrated the best performance on seven of ten datasets, achieving an average accuracy of 76%. In retrieval task, the proposed algorithm achieved the best performance under different datasets and hidden sizes. The result of ablation study also demonstrates significance of semantic relationship in multivariate time series representation learning.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Resource Allocation for Mobile Edge Computing System Considering User Mobility with Deep Reinforcement Learning

    Kairi TOKUDA  Takehiro SATO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    173-184

    Mobile edge computing (MEC) is a key technology for providing services that require low latency by migrating cloud functions to the network edge. The potential low quality of the wireless channel should be noted when mobile users with limited computing resources offload tasks to an MEC server. To improve the transmission reliability, it is necessary to perform resource allocation in an MEC server, taking into account the current channel quality and the resource contention. There are several works that take a deep reinforcement learning (DRL) approach to address such resource allocation. However, these approaches consider a fixed number of users offloading their tasks, and do not assume a situation where the number of users varies due to user mobility. This paper proposes Deep reinforcement learning model for MEC Resource Allocation with Dummy (DMRA-D), an online learning model that addresses the resource allocation in an MEC server under the situation where the number of users varies. By adopting dummy state/action, DMRA-D keeps the state/action representation. Therefore, DMRA-D can continue to learn one model regardless of variation in the number of users during the operation. Numerical results show that DMRA-D improves the success rate of task submission while continuing learning under the situation where the number of users varies.

  • Resource-Efficient and Availability-Aware Service Chaining and VNF Placement with VNF Diversity and Redundancy

    Takanori HARA  Masahiro SASABE  Kento SUGIHARA  Shoji KASAHARA  

     
    PAPER

      Pubricized:
    2023/10/10
      Vol:
    E107-B No:1
      Page(s):
    105-116

    To establish a network service in network functions virtualization (NFV) networks, the orchestrator addresses the challenge of service chaining and virtual network function placement (SC-VNFP) by mapping virtual network functions (VNFs) and virtual links onto physical nodes and links. Unlike traditional networks, network operators in NFV networks must contend with both hardware and software failures in order to ensure resilient network services, as NFV networks consist of physical nodes and software-based VNFs. To guarantee network service quality in NFV networks, the existing work has proposed an approach for the SC-VNFP problem that considers VNF diversity and redundancy. VNF diversity splits a single VNF into multiple lightweight replica instances that possess the same functionality as the original VNF, which are then executed in a distributed manner. VNF redundancy, on the other hand, deploys backup instances with standby mode on physical nodes to prepare for potential VNF failures. However, the existing approach does not adequately consider the tradeoff between resource efficiency and service availability in the context of VNF diversity and redundancy. In this paper, we formulate the SC-VNFP problem with VNF diversity and redundancy as a two-step integer linear program (ILP) that adjusts the balance between service availability and resource efficiency. Through numerical experiments, we demonstrate the fundamental characteristics of the proposed ILP, including the tradeoff between resource efficiency and service availability.

1-20hit(1385hit)