The search functionality is under construction.

Keyword Search Result

[Keyword] receiver(263hit)

1-20hit(263hit)

  • Information Recovery for Signals Intercepted by Dual-Channel Nyquist Folding Receiver with Adjustable Local Oscillator

    Xinqun LIU  Tao LI  Yingxiao ZHAO  Jinlin PENG  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2023/03/24
      Vol:
    E106-C No:8
      Page(s):
    446-449

    Conventional Nyquist folding receiver (NYFR) uses zero crossing rising (ZCR) voltage times to control the RF sample clock, which is easily affected by noise. Moreover, the analog and digital parts are not synchronized so that the initial phase of the input signal is lost. Furthermore, it is assumed in most literature that the input signal is in a single Nyquist zone (NZ), which is inconsistent with the actual situation. In this paper, we propose an improved architecture denominated as a dual-channel NYFR with adjustable local oscillator (LOS) and an information recovery algorithm. The simulation results demonstrate the validity and viability of the proposed architecture and the corresponding algorithm.

  • Analysis of Sampling Aperture Impact on Nyquist Folding Receiver Output

    Hangjin SUN  Lei WANG  Zhaoyang QIU  Qi ZHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1616-1620

    The Nyquist folding receiver (NYFR) is a novel analog-to-information architecture, which can achieve wideband receiving with a small amount of system resource. The NYFR uses a radio frequency (RF) non-uniform sampling to realize wideband receiving, and the practical RF non-uniform sample pulse train usually contains an aperture. Therefore, it is necessary to investigate the aperture impact on the NYFR output. In this letter, based on the NYFR output signal to noise ratio (SNR), the aperture impact on the NYFR is analyzed. Focusing on the aperture impact, the corresponding NYFR output signal power and noise power are given firstly. Then, the relation between the aperture and the output SNR is analyzed. In addition, the output SNR distribution containing the aperture is investigated. Finally, combing with a parameter estimation method, several simulations are conducted to prove the theoretical aperture impact.

  • A Distortionless Anti-Jamming Method Based on STAP for GNSS Receiver

    Fankun ZENG  Xin QIU  Jinhai LI  Haiyang LIU  Xiaoran CHEN  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/04/26
      Vol:
    E105-B No:11
      Page(s):
    1467-1476

    Global Navigation Satellite System (GNSS) receivers often realize anti-jamming capabilities by combining array antennas with space-time adaptive processing (STAP). Unfortunately, in suppressing the interference, basic STAP degrades the GNSS signal. For one thing, additional carrier phase errors and code phase errors to the GNSS signal are introduced; for another, the shape of the cross-correlation function (CCF) will be distorted by STAP, introducing tracking errors when the receiver is in tracking mode. Both of them will eventually cause additional Pseudo-Range (PR) bias, and these problems prevent STAP from being directly applied to high-precision satellite navigation receivers. The paper proposes a novel anti-jamming method based on STAP that solves the above problems. First, the proposed method constructs a symmetric STAP by constraining the STAP coefficients. Subsequently, with the information of the steering vector, a compensation FIR filter is cascaded after the symmetric STAP. This approach ensures that the proposed method introduces only a fixed offset to the code phase and carrier phase, and the order of the STAP completely determines the offset, which can be compensated during PR measurements. Meanwhile, the proposed method maintains the symmetry of the CCF, and the receiver can accurately track the carrier phase and code phase in tracking mode. The effectiveness of the proposed method is validated through simulations, which suggest that, in the worst case, our method does not increase carrier and code phase errors and tracking error at the expense of only a 2.86dB drop in interference suppression performance.

  • A 0.37mm2 Fully-Integrated Wide Dynamic Range Sub-GHz Receiver Front-End without Off-Chip Matching Components

    Yuncheng ZHANG  Bangan LIU  Teruki SOMEYA  Rui WU  Junjun QIU  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Pubricized:
    2022/01/20
      Vol:
    E105-C No:7
      Page(s):
    334-342

    This paper presents a fully integrated yet compact receiver front-end for Sub-GHz applications such as Internet-of-Things (IoT). The low noise amplifier (LNA) matching network leverages an inductance boosting technique. A relatively small on-chip inductor with a compact area achieves impedance matching in such a low frequency. Moreover, a passive-mixer-first mode bypasses the LNA to extend the receiver dynamic-range. The passive mixer provides matching to the 50Ω antenna interface to eliminate the need for additional passive components. Therefore, the receiver can be fully-integrated without any off-chip matching components. The flipped-voltage-follower (FVF) cell is adopted in the low pass filter (LPF) and the variable gain amplifier (VGA) for its high linearity and low power consumption. Fabricated in 65nm LP CMOS process, the proposed receiver front-end occupies 0.37mm2 core area, with a tolerable input power ranging from -91.5dBm to -1dBm for 500kbps GMSK signal at 924MHz frequency. The power consumption is 1mW power under a 1.2V supply.

  • Receiver Selective Opening Chosen Ciphertext Secure Identity-Based Encryption

    Keisuke HARA  Takahiro MATSUDA  Keisuke TANAKA  

     
    PAPER

      Pubricized:
    2021/08/26
      Vol:
    E105-A No:3
      Page(s):
    160-172

    In the situation where there are one sender and multiple receivers, a receiver selective opening (RSO) attack for an identity-based encryption (IBE) scheme considers adversaries that can corrupt some of the receivers and get their user secret keys and plaintexts. Security against RSO attacks for an IBE scheme ensures confidentiality of ciphertexts of uncorrupted receivers. In this paper, we formalize a definition of RSO security against chosen ciphertext attacks (RSO-CCA security) for IBE and propose the first RSO-CCA secure IBE schemes. More specifically, we construct an RSO-CCA secure IBE scheme based on an IND-ID-CPA secure IBE scheme and a non-interactive zero-knowledge proof system with unbounded simulation soundness and multi-theorem zero-knowledge. Through our generic construction, we obtain the first pairing-based and lattice-based RSO-CCA secure IBE schemes.

  • An Efficient Public Verifiable Certificateless Multi-Receiver Signcryption Scheme for IoT Environments

    Dae-Hwi LEE  Won-Bin KIM  Deahee SEO  Im-Yeong LEE  

     
    PAPER

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:11
      Page(s):
    1869-1879

    Lightweight cryptographic systems for services delivered by the recently developed Internet of Things (IoT) are being continuously researched. However, existing Public Key Infrastructure (PKI)-based cryptographic algorithms are difficult to apply to IoT services delivered using lightweight devices. Therefore, encryption, authentication, and signature systems based on Certificateless Public Key Cryptography (CL-PKC), which are lightweight because they do not use the certificates of existing PKI-based cryptographic algorithms, are being studied. Of the various public key cryptosystems, signcryption is efficient, and ensures integrity and confidentiality. Recently, CL-based signcryption (CL-SC) schemes have been intensively studied, and a multi-receiver signcryption (MRSC) protocol for environments with multiple receivers, i.e., not involving end-to-end communication, has been proposed. However, when using signcryption, confidentiality and integrity may be violated by public key replacement attacks. In this paper, we develop an efficient CL-based MRSC (CL-MRSC) scheme using CL-PKC for IoT environments. Existing signcryption schemes do not offer public verifiability, which is required if digital signatures are used, because only the receiver can verify the validity of the message; sender authenticity is not guaranteed by a third party. Therefore, we propose a CL-MRSC scheme in which communication participants (such as the gateways through which messages are transmitted) can efficiently and publicly verify the validity of encrypted messages.

  • Uplink Performance Analysis of MU-MIMO ZF Receiver Over Correlated Rayleigh Fading Channel with Imperfect CSI

    Supraja EDURU  Nakkeeran RANGASWAMY  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/04/21
      Vol:
    E104-B No:10
      Page(s):
    1328-1335

    In this paper, the uplink performance of Multi-User Multiple Input Multiple Output (MU-MIMO) Zero Forcing (ZF) receiver is investigated over correlated Rayleigh fading channels with channel estimation error. A mathematical expression for the sub-streams' output Signal to Noise Ratio (SNR) with transmit and receive-correlation is derived in the presence of erroneous channel estimates. Besides, an approximate and accurate expression for the Bit Error Rate (BER) of ZF receiver for 16-Quadrature Amplitude Modulation (QAM) with transmit-correlation is deduced in terms of the hypergeometric function. Subsequently, the developed analytical BER is verified by Monte-Carlo trails accounting various system parameters. The simulation results indicate that ZF receiver's BER relies solely on the transmit-correlation for the same number of transmit and receive-antennas at higher average SNR values per transmitted symbol (Es/N0). Also, a logarithmic and exponential growth in the BER is observed with an increase in the Mean Square estimation Error (MSE) and correlation coefficient, respectively.

  • 300-GHz-Band OFDM Video Transmission with CMOS TX/RX Modules and 40dBi Cassegrain Antenna toward 6G

    Yohei MORISHITA  Sangyeop LEE  Toshihiro TERAOKA  Ruibing DONG  Yuichi KASHINO  Hitoshi ASANO  Shinsuke HARA  Kyoya TAKANO  Kosuke KATAYAMA  Takenori SAKAMOTO  Naganori SHIRAKATA  Koji TAKINAMI  Kazuaki TAKAHASHI  Akifumi KASAMATSU  Takeshi YOSHIDA  Shuhei AMAKAWA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2021/01/26
      Vol:
    E104-C No:10
      Page(s):
    576-586

    This paper demonstrates 300GHz terahertz wireless communication using CMOS transmitter (TX) and receiver (RX) modules targeting sixth-generation (6G). To extend communication distance, CMOS modules with WR-3.4 waveguide interface and a high-gain antenna of 40dBi Cassegrain antenna are designed, achieving 36Gbps throughput at a 1m communication distance. Besides, in order to support orthogonal frequency-division multiplexing (OFDM), a self-heterodyne architecture is introduced, which effectively cancels the phase noise in multi-carrier modulation. As a proof-of-concept (PoC), the paper successfully demonstrates real-time video transfer at a 10m communication distance using fifth-generation (5G) based OFDM at the 300GHz frequency band.

  • Receiver Selective Opening CCA Secure Public Key Encryption from Various Assumptions

    Yi LU  Keisuke HARA  Keisuke TANAKA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/16
      Vol:
    E104-A No:9
      Page(s):
    1206-1218

    Receiver selective opening (RSO) attack for public key encryption (PKE) captures a situation where one sender sends messages to multiple receivers, an adversary can corrupt a set of receivers and get their messages and secret keys. Security against RSO attack for a PKE scheme ensures confidentiality of other uncorrupted receivers' ciphertexts. Among all of the RSO security notions, simulation-based RSO security against chosen ciphertext attack (SIM-RSO-CCA security) is the strongest notion. In this paper, we explore constructions of SIM-RSO-CCA secure PKE from various computational assumptions. Toward this goal, we show that a SIM-RSO-CCA secure PKE scheme can be constructed based on an IND-CPA secure PKE scheme and a designated-verifier non-interactive zero-knowledge (DV-NIZK) argument satisfying one-time simulation soundness. Moreover, we give the first construction of DV-NIZK argument satisfying one-time simulation soundness. Consequently, through our generic construction, we obtain the first SIM-RSO-CCA secure PKE scheme under the computational Diffie-Hellman (CDH) or learning parity with noise (LPN) assumption.

  • Energy-Efficient Distributed Estimation Using Content-Based Wake-Up in Wireless Sensor Networks

    Hitoshi KAWAKITA  Hiroyuki YOMO  Petar POPOVSKI  

     
    PAPER-Network

      Pubricized:
    2020/09/29
      Vol:
    E104-B No:4
      Page(s):
    391-400

    In this paper, we advocate applying the concept of content-based wake-up to distributed estimation in wireless sensor networks employing wake-up receivers. With distributed estimation, where sensing data of multiple nodes are used for estimating a target observation, the energy consumption can be reduced by ensuring that only a subset of nodes in the network transmit their data, such that the collected data can guarantee the required estimation accuracy. In this case, a sink needs to selectively wake up those sensor nodes whose data can contribute to the improvement of estimation accuracy. In this paper, we propose wake-up signaling called estimative sampling (ES) that can selectively activate the desired nodes by using content-based wake-up control. The ES method includes a mechanism that dynamically searches for the desired nodes over a distribution of sensing data. With numerical results obtained by computer simulations, we show that the distributed estimation with ES method achieves lower energy consumption than conventional identity-based wake-up while satisfying the required accuracy. We also show that the proposed dynamic mechanism finely controls the trade-off between delay and energy consumption to complete the distributed estimation.

  • A 32GHz 68dBΩ Low-Noise and Balance Operation Transimpedance Amplifier in 130nm SiGe BiCMOS for Optical Receivers

    Chao WANG  Xianliang LUO  Mohamed ATEF  Pan TANG  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1408-1416

    In this paper, a balance operation Transimpedance Amplifier (TIA) with low-noise has been implemented for optical receivers in 130 nm SiGe BiCMOS Technology, in which the optimal tradeoff emitter current density and the location of high-frequency noise corner were analyzed for acquiring low-noise performance. The Auto-Zero Feedback Loop (AZFL) without introducing unnecessary noises at input of the TIA, the tail current sink with high symmetries and the balance operation TIA with the shared output of Operational Amplifier (OpAmp) in AZFL were designed to keep balanced operation for the TIA. Moreover, cascode and shunt-feedback were also employed to expanding bandwidth and decreasing input referred noise. Besides, the formula for calculating high-frequency noise corner in Heterojunction Bipolar Transistor (HBT) TIA with shunt-feedback was derived. The electrical measurement was performed to validate the notions described in this work, appearing 9.6 pA/√Hz of input referred noise current Power Spectral Density (PSD), balance operation (VIN1=896mV, VIN2=896mV, VOUT1=1.978V, VOUT2=1.979V), bandwidth of 32GHz, overall transimpedance gain of 68.6dBΩ, a total 117mW power consumption and chip area of 484µm × 486µm.

  • A Filter Design Method of Direct RF Undersampling On-Board Receiver for Ka-Band HTS

    Tomoyuki FURUICHI  Yang GUI  Mizuki MOTOYOSHI  Suguru KAMEDA  Takashi SHIBA  Noriharu SUEMATSU  

     
    PAPER

      Pubricized:
    2020/03/27
      Vol:
    E103-B No:10
      Page(s):
    1078-1085

    In this paper, we propose a radio frequency (RF) anti-aliasing filter design method considering the effect of a roll-off characteristic on a noise figure (NF) in the direct RF undersampling receiver. The proposed method is useful for broadband reception that a system bandwidth (BW) has nearly half of the sampling frequency (1/2 fs). When the system BW is extended nearly 1/2 fs, the roll-off band is out of the desired Nyquist zone and it affects NF additionally. The proposed method offers a design target regarding the roll-off characteristic not only the rejection ratio. The target is helpful as a design guide to meet the allowed NF. We design the filter based on the proposed method and it is applied to the direct RF undersampling on-board receiver for Ka-band high throughput satellite (HTS). The measured NF value of the implemented receiver almost matched the designed value. Moreover, the receiver achieved the reception bandwidth which is 90% of 1/2 fs.

  • Evaluation of Electromagnetic Noise Emitted from Light-Emitting Diode (LED) Lamps and Compatibility with Wireless Medical Telemetry Service

    Kai ISHIDA  Ifong WU  Kaoru GOTOH  Yasushi MATSUMOTO  

     
    PAPER

      Pubricized:
    2019/12/04
      Vol:
    E103-B No:6
      Page(s):
    637-644

    Wireless medical telemetry service (WMTS) is an important wireless communication system in healthcare facilities. Recently, the potential for electromagnetic interference by noise emitted by switching regulators installed in light-emitting diode (LED) lamps has been a serious problem. In this study, we evaluated the characteristics of the electromagnetic noise emitted from LED lamps and its effect on WMTS. Switching regulators generally emit wide band impulsive noise whose bandwidth reaches 400MHz in some instances owing to the switching operation, but this impulsive nature is difficult to identify in the reception of WMTS because the bandwidth of WMTS is much narrower than that of electromagnetic noise. Gaussian approximation (GA) can be adopted for band-limited electromagnetic noise whose characteristics have no repetitive variation. On the other hand, GA with the impulsive correction factor (ICF) can be adopted for band-limited electromagnetic noise that has repetitive variation. We investigate the minimum receiver sensitivity of WMTS for it to be affected by electromagnetic noise emitted from LED lamps. The required carrier-to-noise power ratio (CNR) of Gaussian noise and electromagnetic noise for which GA can be adopted was approximately 15dB, but the electromagnetic noise for which GA with the ICF can be adopted was 3 to 4dB worse. Moreover, the spatial distribution of electromagnetic noise surrounding an LED lamp installation was measured. Finally, we roughly estimated the offset distance between the receiving antenna of WMTS and LED lamps when a WMTS signal of a certain level was added in a clinical setting using our experimental result for the required CNR.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • Unbiased Interference Suppression Method Based on Spectrum Compensation Open Access

    Jian WU  Xiaomei TANG  Zengjun LIU  Baiyu LI  Feixue WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/07/16
      Vol:
    E103-B No:1
      Page(s):
    52-59

    The major weakness of global navigation satellite system receivers is their vulnerability to intentional and unintentional interference. Frequency domain interference suppression (FDIS) technology is one of the most useful countermeasures. The pseudo-range measurement is unbiased after FDIS filtering given an ideal analog channel. However, with the influence of the analog modules used in RF front-end, the amplitude response and phase response of the channel equivalent filter are non-ideal, which bias the pseudo-range measurement after FDIS filtering and the bias varies along with the frequency of the interference. This paper proposes an unbiased interference suppression method based on signal estimation and spectrum compensation. The core idea is to use the parameters calculated from the tracking loop to estimate and reconstruct the desired signal. The estimated signal is filtered by the equivalent filter of actual channel, then it is used for compensating the spectrum loss caused by the FDIS method in the frequency domain. Simulations show that the proposed algorithm can reduce the pseudo-range measurement bias significantly, even for channels with asymmetrical group delay and multiple interference sources at any location.

  • Burst-Mode CMOS Transimpedance Amplifier Based on a Regulated-Cascode Circuit with Gain-Mode Switching

    Takuya KOJIMA  Mamoru KUNIEDA  Makoto NAKAMURA  Daisuke ITO  Keiji KISHINE  

     
    LETTER-Circuit Theory

      Vol:
    E102-A No:6
      Page(s):
    845-848

    We present a novel burst-mode transimpedance amplifier (TIA) with a gain-mode switching. The proposed TIA utilizes a regulated-cascode (RGC) input stage for broadband characteristics. To expand a dynamic range, the RGC controls a linear operating range depending on transimpedance gains by adjusting bias conditions. This TIA is implemented using the 0.18μm-CMOS technology. The experimental results show that the proposed TIA IC has a good eye-opening and can respond quickly to the burst data.

  • High-Sensitivity Optical Receiver Using Differential Photodiodes AC-Coupled with a Transimpedance Amplifier

    Daisuke OKAMOTO  Hirohito YAMADA  

     
    PAPER-Optoelectronics

      Vol:
    E102-C No:4
      Page(s):
    380-387

    To address the bandwidth bottleneck that exists between LSI chips, we have proposed a novel, high-sensitivity receiver circuit for differential optical transmission on a silicon optical interposer. Both anodes and cathodes of the differential photodiodes (PDs) were designed to be connected to a transimpedance amplifier (TIA) through coupling capacitors. Reverse bias voltage was applied to each of the differential PDs through load resistance. The proposed receiver circuit achieved double the current signal amplitude of conventional differential receiver circuits. The frequency response of the receiver circuit was analyzed using its equivalent circuit, wherein the temperature dependence of the PD was implemented. The optimal load resistances of the PDs were determined to be 5kΩ by considering the tradeoff between the frequency response and bias voltage drop. A small dark current of the PD was important to reduce the voltage drop, but the bandwidth degradation was negligible if the dark current at room temperature was below 1µA. The proposed circuit achieved 3-dB bandwidths of 18.9 GHz at 25°C and 13.7 GHz at 85°C. Clear eye openings in the TIA output waveforms for 25-Gbps 27-1 pseudorandom binary sequence signals were obtained at both temperatures.

  • Periodic Reactance Time Functions for 2-Element ESPAR Antennas Applied to 2-Output SIMO/MIMO Receivers

    Kosei KAWANO  Masato SAITO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    930-939

    In this paper, we propose a periodic reactance time function for 2-element electronically steerable passive array radiator (ESPAR) antennas applicable to the receivers of both single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems with 2 outputs. Based on the proposed function, we evaluate the power patterns of the antenna for various distances between two antenna elements. Moreover, for the distances, we discuss the correlation properties and the strength of the two outputs to find the appropriate distance for the receiver. From the discussions, we can conclude that distances from 0.1 to 0.35 times the wavelength are effective in terms of receive diversity.

  • Low-Overhead Wake-Up Control for Wireless Sensor Networks Employing Wake-Up Receivers

    Naoki TAMURA  Hiroyuki YOMO  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    732-740

    This paper focuses on on-demand wireless sensor networks (WSNs) where a wake-up receiver is installed into each node. In on-demand WSNs, each node sends a wake-up signal including a wake-up ID assigned to a specific destination node in order to remotely activate its main radio interface. This wake-up control helps each node to reduce energy consumed during idle periods, however, the wake-up signal transmitted before every data transmission results in overhead, which degrades communication quality and increases energy consumption at each sender node. In order to reduce the overhead for wake-up control, in this paper, we propose three schemes. First, we propose a scheme called Double Modulation (DM), where each node embeds the sensing data to be transmitted into the payload field of a wake-up signal. The destination interprets the wake-up message differently depending on its wake-up state: if it is in a sleep state, it treats the message as a wake-up signal, otherwise it extracts the sensing data from the detected message. Second, we propose a scheme called Overhearing (OH), where each node observes the frames transmitted by a destination node and suppresses the transmission of wake-up signal when detecting the active state of their destination. Finally, we propose a hybrid scheme that combines OH and DM schemes. Our simulation results show that the proposed schemes can effectively reduce the negative impact of wake-up overhead, and significantly improve data collection rate and energy-efficiency in comparison to on-demand WSN without the proposed schemes.

  • Passive Localization Algorithm for Spaceborne SAR Using NYFR and Sparse Bayesian Learning

    Yifei LIU  Yuan ZHAO  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:3
      Page(s):
    581-585

    A novel Nyquist Folding Receiver (NYFR) based passive localization algorithm with Sparse Bayesian Learning (SBL) is proposed to estimate the position of a spaceborne Synthetic Aperture Radar (SAR).Taking the geometry and kinematics of a satellite into consideration, this paper presents a surveillance geometry model, which formulates the localization problem into a sparse vector recovery problem. A NYFR technology is utilized to intercept the SAR signal. Then, a convergence algorithm with SBL is introduced to recover the sparse vector. Furthermore, simulation results demonstrate the availability and performance of our algorithm.

1-20hit(263hit)