The search functionality is under construction.

Keyword Search Result

[Keyword] wideband(255hit)

1-20hit(255hit)

  • A Novel Quad-Band Branched Monopole Antenna with a Filter Suppressing Higher Order Modes

    Shingo YAMAURA  Kengo NISHIMOTO  Yasuhiro NISHIOKA  Ryosuke KOBAYASHI  Takahiro INO  Yoshio INASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/05/16
      Vol:
    E106-B No:10
      Page(s):
    938-948

    This paper proposes a novel quad-band branched monopole antenna with a filter. The proposed antenna has a simple configuration in which branch-elements are added to a basic configuration consisting of a mast and dielectric wires. The antenna is characterized by performances such as wideband impedance matching, gain stabilization, and gain enhancement. Wideband impedance characteristics satisfying the voltage standing ratio of less than 2 are obtained by exciting a parallel resonance at the lowest band and multi-resonance at high bands. The filter suppressing higher order modes is used for gain stabilization, so that averaged gains above 5dBi are obtained at the quad-band. The antenna has a high gain of 11.1dBi because the branch-elements work as an end-fire array antenna at the highest band. Furthermore, it is clarified that an operating frequency is switched by using a variable bandpass filter at the lowest band. Last, a scale model of the antenna is fabricated and measured, then the effectiveness of the proposed antenna is demonstrated.

  • Multitarget 2-D DOA Estimation Using Wideband LFMCW Signal and Triangle Array Composed of Three Receiver Antennas

    Wentao ZHANG  Chen MIAO  Wen WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    307-316

    Direction of arrival (DOA) estimation has been a primary focus of research for many years. Research on DOA estimation continues to be immensely popular in the fields of the internet of things, radar, and smart driving. In this paper, a simple new two-dimensional DOA framework is proposed in which a triangular array is used to receive wideband linear frequency modulated continuous wave signals. The mixed echo signals from various targets are separated into a series of single-tone signals. The unwrapping algorithm is applied to the phase difference function of the single-tone signals. By using the least-squares method to fit the unwrapped phase difference function, the DOA information of each target is obtained. Theoretical analysis and simulation demonstrate that the framework has the following advantages. Unlike traditional phase goniometry, the framework can resolve the trade-off between antenna spacing and goniometric accuracy. The number of detected targets is not limited by the number of antennas. Moreover, the framework can obtain highly accurate DOA estimation results.

  • A Low Power 100-Gb/s PAM-4 Driver with Linear Distortion Compensation in 65-nm CMOS

    Xiangyu MENG  Kangfeng WEI  Zhiyi YU  Xinlun CAI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/07/01
      Vol:
    E106-C No:1
      Page(s):
    7-13

    This paper proposes a low-power 100Gb/s four-level pulse amplitude modulation driver (PAM-4 Driver) based on linear distortion compensation structure for thin-film Lithium Niobate (LiNbO3) modulators, which manages to achieve high linearity in the output. The inductive peaking technology and open drain structure enable the overall circuit to achieve a 31-GHz bandwidth. With an area of 0.292 mm2, the proposed PAM-4 driver chip is designed in a 65-nm process to achieve power consumption of 37.7 mW. Post-layout simulation results show that the power efficiency is 0.37 mW/Gb/s, RLM is more than 96%, and the FOM value is 8.84.

  • Design of a Dual-Wideband BPF with Parallel-Coupled Stepped Impedance Resonator and Open-Circuited Stubs

    Chun-Ping CHEN  Zhewang MA  Tetsuo ANADA  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/15
      Vol:
    E105-C No:12
      Page(s):
    761-766

    This brief paper proposes a dual-wideband filter consisting of a parallel-coupled stepped-impedance-resonator (SIR) and open-circuited stubs. Firstly, a notched UWB (ultra-wideband) bandpass filter (BPF) with steep skirt characteristics is theoretically designed. Then a bandstop filter(BSF) is implemented using an SIR and open stubs. By replacing the transmission line part of UWB filter with the BSF, a novel dual-wideband filter (DWBPF) is realized. As a design example, a DWBPF with two passbands, i.e. 3.4-4.8GHz and 7.25-10.25GHz, is designed to validate the design procedure. The designed filter exhibits steep skirt characteristics.

  • A 0.4-V 29-GHz-Bandwidth Power-Scalable Distributed Amplifier in 55-nm CMOS DDC Process

    Sangyeop LEE  Shuhei AMAKAWA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    BRIEF PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    561-564

    A power-scalable wideband distributed amplifier is proposed. For reducing the power consumption of this power-hungry amplifier, it is efficient to lower the supply voltage. However, there is a hurdle owing to the transistor threshold voltage. In this work, a CMOS deeply depleted channel process is employed to overcome the hurdle.

  • Joint Wideband Spectrum and DOA Estimation with Compressed Sampling Based on L-Shaped Co-Prime Array

    Wanghan LV  Lihong HU  Weijun ZENG  Huali WANG  Zhangkai LUO  

     
    PAPER-Analog Signal Processing

      Pubricized:
    2022/01/21
      Vol:
    E105-A No:7
      Page(s):
    1028-1037

    As known to us all, L-shaped co-prime array (LCA) is a recently introduced two-dimensional (2-D) sparse array structure, which is extended from linear co-prime array (CA). Such sparse array geometry can be used for 2-D parameters estimation with higher degrees-of-freedom (DOF). However, in the scenario where several narrowband transmissions spread over a wide spectrum, existing technique based on LCA with Nyquist sampling may encounter a bottleneck for both analog and digital processing. To alleviate the burden of high-rate Nyquist sampling, a method of joint wideband spectrum and direction-of-arrival (DOA) estimation with compressed sampling based on LCA, which is recognized as LCA-based modulated wideband converter (MWC), is presented in this work. First, the received signal along each antenna is mixed to basebands, low-pass filtered and down-sampled to get the compressed sampling data. Then by constructing the virtual received data of 2-D difference coarray, we estimate the wideband spectrum and DOA jointly using two recovery methods where the first is a joint ESPRIT method and the other is a joint CS method. Numerical simulations illustrate the validity of the proposed LCA based MWC system and show the superiority.

  • Improvement of Port-to-Port Isolation Characteristics of a Linearly Dual-Polarized Dual-Band and Wideband Multi-Ring Microstrip Antenna Fed by Two L-Probes with a Via

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  Masahiro TATEMATSU  

     
    PAPER-Antennas

      Pubricized:
    2021/12/17
      Vol:
    E105-B No:6
      Page(s):
    715-721

    This paper presents improvement of port-to-port isolation characteristics of a linearly dual-polarized dual-band and wideband multi-ring microstrip antenna (MR-MSA) fed by two L-probes. The linearly dual-polarized dual-band and wideband MR-MSA consists of two circular ring patches and two L-probes arranged in a multi-layered dielectric substrate. By using a thick substrate for the L-probe and arranging two ring patches as radiation elements, the proposed antenna operates wideband and dual-band characteristics. Furthermore, by arranging two L-probes at the orthogonal positions, the proposed antenna can radiate dual linear polarizations. In this paper, for improving port-to-port isolation characteristics of the linearly dual-polarized dual-band and wideband MR-MSA fed by two L-probes, a via connected to the ground plane at the center of the radiation elements is arranged. The fractional bandwidths below -10dB reflection obtained by the simulation of the MR-MSA with the via were 17.0% and 14.4%. Furthermore, the simulated isolation characteristics were more than 21.0dB and 17.0dB in the two bands. Improvement of the isolation characteristics between two ports as well as the dual-band and wideband performance of the proposed MR-MSA with the via were confirmed by the simulation and the measurement.

  • Development of Superconducting Devices Supporting Radio Astronomy Open Access

    Yoshinori UZAWA  Matthias KROUG  Takafumi KOJIMA  Masanori TAKEDA  Kazumasa MAKISE  Shohei EZAKI  Wenlei SHAN  Akihira MIYACHI  Yasunori FUJII  Hirotaka TERAI  

     
    INVITED PAPER

      Pubricized:
    2021/03/24
      Vol:
    E104-C No:9
      Page(s):
    411-421

    This paper describes the development of superconductor-insulator-superconductor (SIS) mixers for the Atacama Large Millimeter/submillimeter Array (ALMA) from the device point of view. During the construction phase of ALMA, the National Astronomical Observatory of Japan (NAOJ) successfully fabricated SIS mixers to meet the stringent ALMA noise temperature requirements of less than 230 K (5 times the quantum noise) for Band 10 (787-950 GHz) in collaboration with the National Institute of Information and Communications Technology. Band 10 covers the highest frequency band of ALMA and is recognized as the most difficult band in terms of superconducting technology. After the construction, the NAOJ began development studies for ALMA enhancement such as wideband and multibeam SIS mixers according to top-level science requirements, which are also presented.

  • Radiation Properties of Wideband Multi-Ring Microstrip Antennas Fed by an L-Probe for Single- and Dual-Band Operations

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  Tatsuya FUKUNAGA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    858-864

    This paper presents the design and measurement of wideband multi-ring microstrip antennas fed by an L-probe for single- and dual-band operation. The proposed antennas consist of one or two square ring patches and an L-probe arranged in a multi-layered dielectric substrate. By using a thick substrate for the L-probe and optimizing the distances between the L-probe and the patches, wideband performance is successfully achieved. The optimal substrate thickness of the L-probe and patches to obtain good wideband performance were determined, and prototype antennas for single- and dual-band operation were fabricated and tested. The measured fractional bandwidths corresponding to reflection coefficients below -10dB were 46.1% for the single-band antenna and 20.3% and 15.7% for the dual-band antenna. The measured gains of the test antennas in the above bandwidths were 0-6.9dBi for the single-band antenna and 3.0-8.6dBi for the dual-band antenna. Although the E-plane radiation patterns were slightly tilted against the frequency, stable broadside radiation was confirmed. The proposed antennas exhibited excellent performance as wideband planar antennas for single- and dual-band operation. The proposed wideband antennas can be easily extended to a dual linearly polarized antenna by using another L-probe in the orthogonal position.

  • Noncontact Monitoring of Heartbeat and Movements during Sleep Using a Pair of Millimeter-Wave Ultra-Wideband Radar Systems Open Access

    Takuya SAKAMOTO  Sohei MITANI  Toru SATO  

     
    PAPER-Sensing

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    463-471

    We experimentally evaluate the performance of a noncontact system that measures the heartbeat of a sleeping person. The proposed system comprises a pair of radar systems installed at two different positions. We use millimeter-wave ultra-wideband multiple-input multiple-output array radar systems and evaluate the performance attained in measuring the heart inter-beat interval and body movement. The importance of using two radar systems instead of one is demonstrated in this paper. We conduct three types of experiments; the first and second experiments are radar measurements of three participants lying on a bed with and without body movement, while the third experiment is the radar measurement of a participant actually sleeping overnight. The experiments demonstrate that the performance of the radar-based vital measurement strongly depends on the orientation of the person under test. They also show that the proposed system detects 70% of rolling-over movements made overnight.

  • A Simple f0/2f0 Microstrip Diplexer with Low and Wideband Insertion-Loss Characteristics

    Ken'ichi HOSOYA  Ryosuke EMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/06/22
      Vol:
    E104-C No:1
      Page(s):
    11-21

    An f0/2f0 (frequency ratio of two) microstrip diplexer with simple circuit configuration as well as low and wideband insertion-loss characteristics is proposed. It is a parallel combination of a coupled line for f0 port and a wave-trap circuit composed of a transmission line and an open stub for 2f0 port. All the lines and stub have a quarter-wave length for f0. Matching circuits are not needed. Circuit and electro-magnetic simulation results prove that the proposed f0/2f0 diplexer exhibits well-balanced properties of insertion loss (IL), IL bandwidth, and isolation, as compared to conventional simple f0/2f0 diplexers composed of two wave-trap circuits or two coupled lines. The proposed diplexer is fabricated on a resin substrate in a microstrip configuration at frequencies of f0/2f0=2.5/5 GHz. Measured results are in good agreement with simulations and support the above conclusion. The proposed diplexer exhibits ILs of 0.46/0.56 dB with 47/47% relative bandwidth (for f0/2f0), which are lower and wider than f0/2f0 diplexers in literatures at the same frequency bands.

  • A 10.4-Gs/s High-Resolution Wideband Radar Sampling System Based on TIADC Technique

    Jingyu LI  Dandan XIAO  Yue ZHANG  

     
    LETTER-Computer System

      Pubricized:
    2020/04/20
      Vol:
    E103-D No:7
      Page(s):
    1765-1768

    A high-speed high-resolution sampling system is the crucial part in wideband radar receivers. A 10.4-GS/s 12-bit wideband sampling system based on TIADC technique is designed in this letter. The acquisition function is implemented on a VPX platform. The storage function is implemented on a standard 19-inch rack server. The sampled data is transmitted at high speed through optical fibers between them. A mixed calibration method based on perfect reconstruction is adopted to compensate channel mismatches of wideband TIADC system. For sinusoidal signals from 100MHz to 5000MHz, more than 46-dB SNDR and 56-dB SFDR can be obtained in this sampling system. This letter provides a high-speed and high-resolution acquisition scheme for direct intermediate frequency sampling wideband digital receivers.

  • Accelerating Outdoor UWB — Domestic Regulation Transition and Standardization within IEEE 802.15

    Huan-Bang LI  Kenichi TAKIZAWA  Fumihide KOJIMA  

     
    INVITED PAPER

      Vol:
    E103-A No:1
      Page(s):
    269-277

    Because of its high throughput potentiality on short-range communications and inherent superiority of high precision on ranging and localization, ultra-wideband (UWB) technology has been attracting attention continuously in research and development (R&D) as well as in commercialization. The first domestic regulation admitting indoor UWB in Japan was released by the Ministry of Internal Affairs and Communications (MIC) in 2006. Since then, several revisions have been made in conjunction with UWB commercial penetration, emerging new trends of industrial demands, and coexistence evaluation with other wireless systems. However, it was not until May 2019 that MIC released a new revision to admit outdoor UWB. Meanwhile, the IEEE 802 LAN/MAN Standards Committee has been developing several UWB related standards or amendments accordingly for supporting different use cases. At the time when this paper is submitted, a new amendment known as IEEE 802.15.4z is undergoing drafting procedure which is expected to enhance ranging ability for impulse radio UWB (IR-UWB). In this paper, we first review the domestic UWB regulation and some of its revisions to get a picture of the domestic regulation transition from indoor to outdoor. We also foresee some anticipating changes in future revisions. Then, we overview several published IEEE 802 standards or amendments that are related to IR-UWB. Some features of IEEE 802.15.4z in drafting are also extracted from open materials. Finally, we show with our recent research results that time bias internal a transceiver becomes important for increasing localization accuracy.

  • An Integrated Wideband Operational Transconductance Amplifier with Complementary Slew-Rate Enhancer

    Deng-Fong LU  Chin HSIA  Kun-Chu LEE  

     
    LETTER

      Vol:
    E103-A No:1
      Page(s):
    295-296

    The paper presents a low power, wideband operational trans-conductance amplifier (OTA) for applications to drive large capacitive loads. In order to satisfy the low static power dissipation, high-speed, while reserving high current driving capability, the complementary slew-rate enhancer in conjunction with a dual class AB input stage to improve the slew-rate of a rail-to-rail two-stage OTA is proposed. The proposed architecture was implemented using 0.5µm CMOS process with a supply voltage of 5V. The slew-rate can achieve 68V/µsec at static power dissipation of 0.9mW, which can be used to efficiently drive larger than 6 nF capacitive load. The measured output has a total harmonic distortion of less than 5%.

  • Low-Profile of Monocone Antenna by Using Planar Inverted-F Antenna Structure

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2260-2266

    The monocone antenna is a type of monopole antenna that has wideband characteristics. This paper proposes a low-profile monocone antenna with a planar inverted-F structure. The characteristics of the proposed antenna are analyzed through a simulation. The results demonstrate that the low-profile antenna offers wideband performance, and the relative bandwidth of VSWR ≤ 2 is found to be more than 190%. In addition, miniaturization of the monocone antenna is elucidated. The proposed antenna is prototyped, and the validity of the simulation is verified through measurements.

  • A Highly Efficient Wideband Two-Dimensional Direction Estimation Method with L-Shaped Microphone Array

    Bandhit SUKSIRI  Masahiro FUKUMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1457-1472

    This paper presents an efficient wideband two-dimensional direction-of-arrival (DOA) estimation for an L-shaped microphone array. We propose a way to construct a wideband sample cross-correlation matrix without any process of DOA preliminary estimation, such as beamforming technique, by exploiting sample cross-correlation matrices of two different frequencies for all frequency bins. Subsequently, wideband DOAs can be estimated by using this wideband matrix along with a scheme of estimating DOA in a narrowband subspace method. Therefore, a contribution of our study is providing an alternative framework for recent narrowband subspace methods to estimating the DOA of wideband sources directly. It means that this framework enables cutting-edge techniques in the existing narrowband subspace methods to implement the wideband direction estimation for reducing the computational complexity and facilitating the estimation algorithm. Theoretical analysis and effectiveness of the proposed method are substantiated through numerical simulations and experiments, which are performed in reverberating environments. The results show that performance of the proposed method performs better than others over a range of signal-to-noise ratio with just a few microphones. All these advantages make the proposed method a powerful tool for navigation systems based on acoustic signal processing.

  • Low-Profile and Small Monocone Antenna Composed of a Circular Plate and Three Oblique Short Elements

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    740-747

    A monocone antenna is a type of monopole antenna with wideband characteristics. In this paper, a low-profile and small monocone antenna is proposed, by loading a circular plate and three oblique short elements. The characteristics of the proposed antenna are analyzed via simulation. Consequently, a low-profile and small monocone antenna can be obtained while maintaining the wideband characteristics. The relative bandwidth of the proposed antenna (voltage standing wave ratio (VSWR) ≤ 2) is greater than 158.9%. The frequency band of digital terrestrial television broadcasting and the mobile communication systems (from 470 to 3600MHz) in Japan can be completely covered with VSWR ≤ 2. In addition, the radiation patterns of the proposed antenna are omni-directional. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.

  • 7-Bit Multilayer True-Time Delay up to 1016ps for Wideband Phased Array Antenna Open Access

    Minyoung YOON  Sangwook NAM  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:8
      Page(s):
    622-626

    We present a seven-bit multilayer true-time delay (TTD) circuit operating from 1 to 7GHz for wideband phased array antennas. By stacking advanced substrates with low dielectric loss, the TTD with PCB process is miniaturized and has low insertion loss. The signal vias with surrounding ground vias are designed to provide impedance matching throughout the band, allowing the overall group delay to be flat. The standard deviation of the TTD for all states is below 19ps, which is 1.87% of the maximum group delay. The maximum delay is 1016ps with resolution of 8ps. The implemented TTD is 36.6×19.4mm2 and consumes 0.65mW at 3.3V supply for all the delay states. The measured input/output return loss is better than 12.1dB for the band of 1-7GHz.

  • Numerical Channel Characterizations for Liver-Implanted Communications Considering Different Human Subjects

    Pongphan LEELATIEN  Koichi ITO  Kazuyuki SAITO  Manmohan SHARMA  Akram ALOMAINY  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    876-883

    This paper presents a numerical study of the wireless channel characteristics of liver implants in a frequency range of 4.5-6.5GHz, considering different digital human phantoms by employing two inhomogeneous male and female models. Path loss data for in-body to on-body and in-body to off-body communication scenarios are provided. The influence of respiration-induced organ movement on signal attenuation is demonstrated. A narrower range of attenuation deviation is observed in the female model as compared to the male model. The path loss data in the female body is between 40-80dB which is around 5-10dB lower than the male model. Path loss data for the in-body to off-body scenario in both models suggest that in-body propagation is the main component of total path loss in the channel. The results demonstrate that channel characteristics are subject dependent, and thus indicate the need to take subject dependencies into consideration when investigating in-body communication channels.

  • Low Power and Reduced Hardware UWB Beamformers for Future 5G Communications Open Access

    John L. VOLAKIS  Rimon HOKAYEM  Satheesh Bojja VENKATAKRISHNAN  Elias A. ALWAN  

     
    INVITED PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    166-173

    We present a novel hybrid beamforming architecture for high speed 5G technologies. The architecture combines several new concepts to achieve significant hardware and cost reduction for large antenna arrays. Specifically, we employ an on-site code division multiplexing scheme to group several antenna elements into a single analog-to-digital converter (ADC). This approach significantly reduces analog hardware and power requirements by a factor of 8 to 32. Additionally, we employ a novel analog frequency independent beamforming scheme to eliminate phase shifters altogether and allow for coherent combining at the analog front-end. This approach avoids traditional phase-shifter-based approaches typically associated with bulky and inefficient components. Preliminary analysis shows that for an array of 800 elements, as much as 97% reduction in cost and power is achieved using the hybrid beamformer as compared to conventional beamformer systems.

1-20hit(255hit)