The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.48

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E81-A No.8  (Publication Date:1998/08/25)

    Special Section on Digital Signal Processing
  • FOREWORD

    Takao HINAMOTO  

     
    FOREWORD

      Page(s):
    1541-1541
  • The Two-Dimensional Lapped Hadamard Transform

    Shogo MURAMATSU  Akihiko YAMADA  Hitoshi KIYA  

     
    PAPER

      Page(s):
    1542-1549

    In this paper, a two-dimensional (2-D) binary-valued (BV) lapped transform (LT) is proposed. The proposed LT has basis images which take only BV elements and satisfies the axial-symmetric (AS) property. In one dimension, there is no 2-point LT with the symmetric basis vectors, and the property is achieved only with the non-overlapping basis which the Hadamard transform (HT) has. Hence, in two dimension, there is no 22-point separable ASLT, and only 2-D HT can be the 22-point separable AS orthogonal transform. By taking non-separable BV basis images, this paper shows that a 22-point ASLT can be obtained. Since the proposed LT is similar to HT, it is referred to as the lapped Hadamard transform (LHT). LHT of larger size is shown to be provided with a tree structure. In addition, LHT is shown to be efficiently implemented by a lattice structure.

  • Root-MUSIC Based Joint Identification and Timing Estimation of Asynchronous CDMA System over Rayleigh Fading Channel

    Wei-Chiang WU  Kwang-Cheng CHEN  

     
    PAPER

      Page(s):
    1550-1559

    An efficient algorithm is proposed to identify the active users and extracting their respective timing information in asynchronous direct sequence CDMA (DS-CDMA) communication system over Rayleigh fading channel. The joint identification and timing estimation algorithm is derived by performing discrete Fourier transform (DFT) on the observation vector and exploiting the uniqueness and nullity characteristics of the root-MUSIC test polynomial. The root-MUSIC based algorithm is shown to be asymptotically near-far resistant. Compared to the maximum a posteriori (MAP) or maximum likelihood (ML) based multiuser timing estimator, the complexity is greatly reduced by separating the multi-dimensional optimization problem into several polynomial rooting problems. Moreover, we characterize the dependence of system performance with respect to signature sequence length, number of active users, window size, desired user's signal-to-noise ratio (SNR) and crosscorrelation property of the code structure. The analytical results reveal that under the uncorrelated Rayleigh fading model, the root-MUSIC timing estimator tends to achieve the Cramer-Rao lower bound (CRLB) at interesting signature sequence length and desired user's SNR.

  • Directions-of-Arrival Estimation of Cyclostationary Coherent Signals in Array Processing

    Jingmin XIN  Hiroyuki TSUJI  Yoshihiro HASE  Akira SANO  

     
    PAPER

      Page(s):
    1560-1569

    In a variety of communication systems, the multipath propagation due to various reflections is often encountered. In this paper, the directions-of-arrival (DOA) estimation of the cyclostationary coherent signals is investigated. A new approach is proposed for estimating the DOA of the coherent signals impinging on a uniform linear array (ULA) by utilizing the spatial smoothing (SS) technique. In order to improve the robustness of the DOA estimation by exploiting the cyclic statistical information sufficiently and handling the coherence effectively, we give a cyclic algorithm with multiple lag parameters and the optimal subarray size. The performance of the presented method is verified and compared with the conventional methods through numerical examples.

  • CMA Adaptive Array Antennas Using Analysis and Synthesis Filter Banks

    Takashi SEKIGUCHI  Yoshio KARASAWA  

     
    PAPER

      Page(s):
    1570-1577

    A constant modulus adaptive array algorithm is derived using analysis and synthesis filter banks to permit adaptive digital beamforming for wideband signals. The properties of the CMA adaptive array using the filter banks are investigated. This array would be used to realize adaptive digital beamforming when this is difficult by means of ordinary (that is, non-subband) processing due to the limited speed of signal processor operations. As an actual application, we present a beamspace adaptive array structure that combines the analysis and synthesis filter banks with RF-domain multibeam array antennas, such as those utilizing optical signal processing.

  • Pipelined Architecture of the LMS Adaptive Digital Filter with the Minimum Output Latency

    Akio HARADA  Kiyoshi NISHIKAWA  Hitoshi KIYA  

     
    PAPER

      Page(s):
    1578-1585

    In this paper, we propose two new pipelined adaptive digital filter architectures. The architectures are based on an equivalent expression of the least mean square (LMS) algorithm. It is shown that one of the proposed architectures achieves the minimum output latency, or zero without affecting the convergence characteristics. We also show that, by increasing the output latency be one, the other architecture can be obtained which has a shorter critical path.

  • A Note on Constrained Least Squares Design of M-D FIR Filter Based on Convex Projection Techniques

    Isao YAMADA  Hiroshi HASEGAWA  Kohichi SAKANIWA  

     
    PAPER

      Page(s):
    1586-1591

    Recently, a great deal of effort has been devoted to the design problem of "constrained least squares M-D FIR filter" because a significant improvement of the squared error is expected by a slight relaxation of the minimax error condition. Unfortunately, no design method has been reported, which has some theoretical guarantee of the convergence to the optimal solution. In this paper, we propose a class of novel design methods of "constrained least squares M-D FIR filter. " The most remarkable feature is that all of the proposed methods have theoretical guarantees of convergences to the unique optimal solution under any consistent set of prescribed maximal error conditions. The proposed methods are based on "convex projection techniques" that computes the metric projection onto the intersection of multiple closed convex sets in real Hilbert space. Moreover, some of the proposed methods can still be applied even for the problem with any inconsistent set of maximal error conditions. These lead to the unique optimal solution over the set of all filters that attain the least sum of squared distances to all constraint sets.

  • Design of Two Channel Stable IIR Perfect Reconstruction Filter Banks

    Xi ZHANG  Toshinori YOSHIKAWA  

     
    PAPER

      Page(s):
    1592-1597

    In this paper, a novel method is proposed for designing two channel biorthogonal filter banks with general IIR filters, which satisfy both the perfect reconstruction and causal stable conditions. Since the proposed filter banks are structurally perfect reconstruction implementation, the perfect reconstruction property is still preserved even when all filter coefficients are quantized. The proposed design method is based on the formulation of a generalized eigenvalue problem by using Remez multiple exchange algorithm. Then, the filter coefficients can be computed by solving the eigenvalue problem, and the optimal solution is easily obtained through a few iterations. One design example is presented to demonstrate the effectiveness of the proposed method.

  • Design of Checkerboard-Distortion-Free Multidimensional Multirate Filters

    Tomohiro TAMURA  Masaki KATO  Toshiyuki YOSHIDA  Akinori NISHIHARA  

     
    PAPER

      Page(s):
    1598-1606

    This paper discusses a design technique for multidimensional (M-D) multirate filters which cause no checkerboard distortion. In the first part of this paper, a necessary and sufficient condition for M-D multirate filters to be checkerboard-distortion-free is derived in the frequency domain. Then, in the second part, this result is applied to a scanning line conversion system for television signals. To confirm the effectiveness of the derived condition, band-limiting filters with and without considering the condition are designed, and the results by these filters are compared. A reducibility of the number of delay elements in such a system is also considered to derive efficient implementation.

  • Multidimensional Multirate Filter and Filter Bank without Checkerboard Effect

    Yasuhiro HARADA  Shogo MURAMATSU  Hitoshi KIYA  

     
    PAPER

      Page(s):
    1607-1615

    The checkerboard effect is caused by the periodic time-variant property of multirate filters which consist of up-samplers and digital filters. Although the conditions for some one-dimensional (1D) multirate systems to avoid the checkerboard effect have been shown, the conditions for Multidimensional (MD) multirate systems have not been considered. In this paper, some theorems about the conditions for MD multirate filters without checkerboard effect are derived. In addition, we also consider MD multirate filter banks without checkerboard effect. Simulation examples show that the checkerboard effect can be avoided by using the proposed conditions.

  • A Low-Power DSP Core Architecture for Low Bitrate Speech Codec

    Hiroyuki OKUHATA  Morgan H. MIKI  Takao ONOYE  Isao SHIRAKAWA  

     
    PAPER

      Page(s):
    1616-1621

    A VLSI implementation of a low-power DSP core is described, which is dedicated to the G. 723. 1 low bitrate speech codec. A number of sophisticated DSP microarchitectures are devised mainly on dual multiply accumulators, rounding and saturation mechanisms, and two-banked on-chip memory. The main attempt is focused on lowering the clock frequency, and therefore on reducing the total power consumption, at the cost of a fairly small increase of chip area. The proposed DSP architecture has been integrated in the total area of 7. 75 mm2 by using a 0. 35 µm CMOS technology, which can operate at 10 MHz with the dissipation of 44. 9 mW from a single 3 V supply.

  • An Optimal Comb Filter for Time-Varying Harmonics Extraction

    Kazuki NISHI  Shigeru ANDO  

     
    PAPER

      Page(s):
    1622-1627

    An optimum filter for extracting a time-varying harmonic signal from the noise-corrupted measurement is proposed. It is derived as a solution of the least mean square estimation with consideration of the pitch estimation error even without any assumption on the filter model. We obtain a comb-like impulse response which consists of homologous and dilated distribution of weights just located periodically with a pitch interval. This remarkable structure is well suited to the proportionally expanding error of pitch repetition times. Examples of the filter design are presented, and the performance of noise suppression is examined by comparison with conventional comb filters.

  • On a Code-Excited Nonlinear Predictive Speech Coding (CENLP) by Means of Recurrent Neural Networks

    Ni MA  Tetsuo NISHI  Gang WEI  

     
    PAPER

      Page(s):
    1628-1634

    To improve speech coding quality, in particular, the long-term dependency prediction characteristics, we propose a new nonlinear predictor, i. e. , a fully connected recurrent neural network (FCRNN) where the hidden units have feedbacks not only from themselves but also from the output unit. The comparison of the capabilities of the FCRNN with conventional predictors shows that the former has less prediction error than the latter. We apply this FCRNN instead of the previously proposed recurrent neural networks in the code-excited predictive speech coding system (i. e. , CELP) and shows that our system (FCRNN) requires less bit rate/frame and improves the performance for speech coding.

  • Genetic Feature Selection for Texture Classification Using 2-D Non-Separable Wavelet Bases

    Jing-Wein WANG  Chin-Hsing CHEN  Jeng-Shyang PAN  

     
    PAPER

      Page(s):
    1635-1644

    In this paper, the performances of texture classification based on pyramidal and uniform decomposition are comparatively studied with and without feature selection. This comparison using the subband variance as feature explores the dependence among features. It is shown that the main problem when employing 2-D non-separable wavelet transforms for texture classification is the determination of the suitable features that yields the best classification results. A Max-Max algorithm which is a novel evaluation function based on genetic algorithms is presented to evaluate the classification performance of each subset of selected features. It is shown that the performance with feature selection in which only about half of features are selected is comparable to that without feature selection. Moreover, the discriminatory characteristics of texture spread more in low-pass bands and the features extracted from the pyramidal decomposition are more representative than those from the uniform decomposition. Experimental results have verified the selectivity of the proposed approach and its texture capturing characteristics.

  • The Application of Fuzzy Hopfield Neural Network to Design Better Codebook for Image Vector Quantization

    Jzau-Sheng LIN  Shao-Han LIU  Chi-Yuan LIN  

     
    PAPER

      Page(s):
    1645-1651

    In this paper, the application of an unsupervised parallel approach called the Fuzzy Hopfield Neural Network (FHNN) for vector qunatization in image compression is proposed. The main purpose is to embed fuzzy reasoning strategy into neural networks so that on-line learning and parallel implementation for codebook design are feasible. The object is to cast a clustering problem as a minimization process where the criterion for the optimum vector qunatization is chosen as the minimization of the average distortion between training vectors. In order to generate feasible results, a fuzzy reasoning strategy is included in the Hopfield neural network to eliminate the need of finding weighting factors in the energy function that is formulated and based on a basic concept commonly used in pattern classification, called the "within-class scatter matrix" principle. The suggested fuzzy reasoning strategy has been proven to allow the network to learn more effectively than the conventional Hopfield neural network. The FHNN based on the within-class scatter matrix shows the promising results in comparison with the c-means and fuzzy c-means algorithms.

  • Image Contour Clustering by Vector Quantization on Multiscale Gradient Planes and Its Application to Image Coding

    Makoto NAKASHIZUKA  Yuji HIURA  Hisakazu KIKUCHI  Ikuo ISHII  

     
    PAPER

      Page(s):
    1652-1660

    We introduce an image contour clustering method based on a multiscale image representation and its application to image compression. Multiscale gradient planes are obtained from the mean squared sum of 2D wavelet transform of an image. The decay on the multiscale gradient planes across scales depends on the Lipshitz exponent. Since the Lipshitz exponent indicates the spatial differentiability of an image, the multiscale gradient planes represent smoothness or sharpness around edges on image contours. We apply vector quatization to the multiscale gradient planes at contours, and cluster the contours in terms of represntative vectors in VQ. Since the multiscale gradient planes indicate the Lipshitz exponents, the image contours are clustered according to its gradients and Lipshitz exponents. Moreover, we present an image recovery algorithm to the multiscale gradient planes, and we achieve the skech-based image compression by the vector quantization on the multiscale gradient planes.

  • Classification of Rotated and Scaled Textured Images Using Invariants Based on Spectral Moments

    Yasuo YOSHIDA  Yue WU  

     
    PAPER

      Page(s):
    1661-1666

    This paper describes a classification method for rotated and scaled textured images using invariant parameters based on spectral-moments. Although it is well known that rotation invariants can be derived from moments of grey-level images, the use is limited to binary images because of its computational unstableness. In order to overcome this drawback, we use power spectrum instead of the grey levels to compute moments and adjust the integral region of moment evaluation to the change of scale. Rotation and scale invariants are obtained as the ratios of the different rotation invariants on the basis of a spectral-moment property with respect to scale. The effectiveness of the approach is illustrated through experiments on natural textures from the Brodatz album. In addition, the stability of the invariants with respect to the change of scale is discussed theoretically and confirmed experimentally.

  • Dedicated Design of Motion Estimator with Bits Truncation Fast Algorithm

    Li JIANG  Dongju LI  Shintaro HABA  Chawalit HONSAWEK  Hiroaki KUNIEDA  

     
    PAPER

      Page(s):
    1667-1675

    In this paper, a dedicated hardware design for motion estimation LSI of MPEG2 is presented. Combining our bits truncation adaptive pyramid (BTAP) algorithm with Window-MSPA architecture, the hardware cost is tremendously reduced without PSNR performance degradation for mean pyramid algorithm. The core of the test chip working at 83 MHz, performs a search range of 67 for image size of 1920 1152 and achieves video rate of 60 field/s. It can be used for HDTV purpose. The chip size is 4. 8 mm 4. 8 mm with 0. 5u 2-level metal CMOS technology. The result in this paper shows our promising future to realize one chip HDTV MPEG2 encoder.

  • Estimation of 2-D Noncausal AR Parameters for Image Restoration Using Genetic Algorithm

    Md.Mohsin MOLLAH  Takashi YAHAGI  

     
    PAPER

      Page(s):
    1676-1682

    Image restoration using estimated parameters of image model and noise statistics is presented. The image is modeled as the output of a 2-D noncausal autoregressive (NCAR) model. The parameter estimation process is done by using the autocorrelation function and a biased term to a conventional least-squares (LS) method for the noncausal modeling. It is shown that the proposed method gives better results than the other parameter estimation methods which ignore the presence of the noise in the observation data. An appropriate image model selection process is also presented. A genetic algorithm (GA) for solving a multiobjective function with single constraint is discussed.

  • The Surface-Shape Operator and Multiscale Approach for Image Classification

    Phongsuphap SUKANYA  Ryo TAKAMATSU  Makoto SATO  

     
    PAPER

      Page(s):
    1683-1689

    In this paper, we propose a new approach for describing image patterns. We integrate the concepts of multiscale image analysis, aura matrix (Gibbs random fields and cooccurrences related statistical model of texture analysis) to define image features, and to obtain the features having robustness with illumination variations and shading effects, we analyse images based on the Topographic Structure described by the Surface-Shape Operator, which describe gray-level image patterns in terms of 3D shapes instead of intensity values. Then, we illustrate usefulness of the proposed features with texture classifications. Results show that the proposed features extracted from multiscale images work much better than those from a single scale image, and confirm that the proposed features have robustness with illumination and shading variations. By comparisons with the MRSAR (Multiresolution Simultaneous Autoregressive) features using Mahalanobis distance and Euclidean distance, the proposed multiscale features give better performances for classifying the entire Brodatz textures: 112 categories, 2016 samples having various brightness in each category.

  • Self-Similar Tiling Multiresolution Analysis and Self-Similar Tiling Wavelet Basis

    Mang LI  Hidemitsu OGAWA  Issei YAMASAKI  

     
    PAPER

      Page(s):
    1690-1698

    We show that characteristic functions of elements of self-similar tilings can be used as scaling functions of multiresolution analysis of L2(Rn). This multiresolution analysis is a generalization of a self-affine tiling multiresolution analysis using a characteristic function of element of self-affine tiling as a scaling function. We give a method of constructing a wavelet basis which realizes such an MRA.

  • Systematic Derivation of Input-Output Relation for 2-D Periodically Time-Variant Digital Filters with an Arbitrary Periodicity

    Toshiyuki YOSHIDA  Yoshinori SAKAI  

     
    LETTER

      Page(s):
    1699-1702

    The authors have proposed a design method for two-dimensional (2-D) separable-denominator (SD) periodically time-variant digital filters (PTV DFs) and confirmed their superiority over 2-D time-invariant DFs. In that result, the periodicity matrix representing the periodicity of the varying filter coefficients is, however, restricted to two cases. This paper extends that idea so that the input-output relation of 2-D SD PTV DFs with an arbitrary periodicity matrix can be determined. This enables us to design wide range of 2-D PTV DFs.

  • Performance Analysis of a Simplified RLS Algorithm for the Estimation of Sinusoidal Signals in Additive Noise

    Yegui XIAO  Yoshiaki TADOKORO  Katsunori SHIDA  Keiya IWAMOTO  

     
    PAPER-Digital Signal Processing

      Page(s):
    1703-1712

    Adaptive estimation of nonstationary sinusoidal signals or quasi-periodic signals in additive noise is of essential importance in many diverse engineering fields, such as communications, biomedical engineering, power systems, pitch detection in transcription and so forth. So far, Kalman filtering based techniques, recursive least square (RLS), simplified RLS (SRLS) and LMS algorithms, for examples, have been developed for this purpose. This work presents in detail a performance analysis for the SRLS algorithm proposed recently in the literature, which is used to estimate an enhanced sinusoid. Its dynamic and tracking properties, noise and lag misadjustments are developed and discussed. It is found that the SRLS estimator is biased, and its misadjustments are functions of not only the noise variance but also, unpleasantly, of the signal parameters. Simulations demonstrate the validity of the analysis. Application of the SRLS to a real-life piano sound is also given to peek at its effectiveness.

  • On the Influence of Transmission Line on Communication System Using Chaos Synchronization

    Junji KAWATA  Yoshifumi NISHIO  Herve DEDIEU  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Page(s):
    1713-1724

    In this paper some new results for analog hardware realization of secure communication system using chaos synchronization have been presented. In particular the effect of the use of transmission line as channel has been considered assuming practical implementation. The influence of the loss of transmission line and mismatching on synchronization has been investigated in chaotic systems based on the Pecora-Carroll concept. It has been shown that desynchronization due to loss can be checked by using an amplifier with appropriate gain. Moreover the bit error rate (BER) has been evaluated in a digital communication system based on the principle of chaotic masking.

  • A Pin Assignment and Global Routing Algorithm for Floorplanning

    Takahiro SHIOHARA  Masahiro FUKUI  

     
    PAPER-VLSI Design Technology and CAD

      Page(s):
    1725-1732

    In this paper, we present a hierarchical technique for simultaneous pin assignment and global routing during floorplanning based on the minimum cost maximum integer flow algorithm with several heuristic cost functions. Furthermore, our algorithm handles feedthrough pins and equi-potential pins taking into account global routes. Our algorithm allows various user specified constraints such as pre-specified pin positions, wiring paths, wiring widths and critical nets. Experimental results including Xerox floorplanning benchmark have shown the effectiveness of the heuristics.

  • A Dynamic Secret Sharing Scheme Based on the Factoring and Diffie-Hellman Problems

    Wei-Bin LEE  Chin-Chen CHANG  

     
    PAPER-Information Security

      Page(s):
    1733-1738

    Secret sharing schemes are good for protecting the important secrets. They are, however, inefficient if the secret shadow held by the shadowholder cannot be reused after recovering the shared secret. Traditionally, the (t, n) secret sharing scheme can be used only once, where t is the threshold value and n is the number of participants. To improve the efficiency, we propose an efficient dynamic secret sharing scheme. In the new scheme, each shadowholder holds a secret key and the corresponding public key. The secret shadow is constructed from the secret key in our scheme, while in previously proposed secret sharing schemes the secret key is the shadow. In addition, the shadow is not constructed by the shadowholder unless it is necessary, and no secure delivery channel is needed. Morever, this paper will further discuss how to change the shared secret, the threshold policy and cheater detection. Therefore, this scheme provides an efficient way to maintain important secrets.

  • Non-Proper Variable-to-Fixed Length Arithmetic Coding

    Suk-hee CHO  Ryuji KOHNO  Ji-hwan PARK  

     
    PAPER-Information Theory and Coding Theory

      Page(s):
    1739-1747

    The VF (Variable-to-Fixed length) arithmetic coding method combines the advantage of an ordinary stream arithmetic code with the simplicity of a block code. One of the advantages of VF codes is that the transmission errors or channel errors do not propagate infinitely and are restricted to the block in question. In this paper, we propose a modified type of non-proper VF arithmetic coding method that defines an input alphabet subset according to both the number of codewords in the current codeword set and input symbol probability and that splits the codeword set completely for a newly defined alphabet subset when the codeword set becomes smaller by each splitting. The proposed coding method carrys out independence of each codeword and guarantees that there is no collision while there is a waste of codeword(s) in conventional AB-coding due to collision. We examine the performance of the proposed method and compare it with that of other VF codes in terms of compression ratio and algorithmic complexity.

  • Approximate Frequency Beam Command of the RPFSR System in the Ground Based Coordinate System

    Min Joon LEE  Iickho SONG  Suk Chan KIM  Hyung-Myung KIM  

     
    LETTER-General Fundamentals and Boundaries

      Page(s):
    1748-1750

    The phase and frequency commands of a rotating radar system, that utilizes the frequency scanning and phase shifters to steer the beam in the azimuth and elevation directions, respectively, are derived in terms of the angles of the ground based coordinate system. The frequency equation derived is approximated to a simple form to reduce the calculation time for real time multi-function radar systems. It is shown that the approximate frequency commands are in good agreement with the exact ones if the range of the azimuth scanning is not too wide.

  • An Estimate of Irregular Sampling in Wavelet Subspace

    Wen CHEN  Shuichi ITOH  

     
    LETTER-Digital Signal Processing

      Page(s):
    1751-1754

    The paper obtains an algorithm to estimate the irregular sampling in wavelet subspaces. Compared to our former work on the problem, the new estimate is relaxed for some wavelet subspaces.

  • An Efficient Active Noise Control Algorithm Based on the Lattice-Transversal Joint (LTJ) Filter Structure

    Jeong-Hyeon YUN  Young-Cheol PARK  Dae-Hee YOUN  Il-Whan CHA  

     
    LETTER-Digital Signal Processing

      Page(s):
    1755-1757

    An efficient active noise control algorithm based on the lattice-transversal joint (LTJ) filter structure is presented, and applied to the active control of broadband noise in a 3-dimensional enclosure. The presented algorithm implements the filtered-x LMS within the LTJ structure obtained by cascading the lattice and transversal structures. Simulation results show that the LTJ-based noise control algorithm has fast convergence speed that is comparable to the lattice-based algorithm while its computational complexity is less demanding.