The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

15061-15080hit(21534hit)

  • Cellular Architecture and Downlink Performance Evaluation of a Dual-Polarized Multimode CDMA Based Local Multipoint Distribution System

    Fu-Tung WANG  Mu-King TSAY  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:2
      Page(s):
    487-496

    A dual-polarized multimode CDMA based local multipoint distribution system (LMDS) is presented. The twisted sector concept and narrowed sector cell are proposed to improve the system performance. Inter-cell interference is analyzed and discussed for the downstream direction based on hexagonal cell architecture. The bit error rate (BER) performance of a multimode CDMA scheme is investigated in terms of the worst case for high order modulation. The simulation results show that the proposed cell structure obtains better power efficiency and makes the multimode CDMA scheme feasible in LMDS deployment.

  • A New Wide-Band and Reduced-Size Hybrid Ring

    Tadashi KAWAI  Isao OHTA  

     
    PAPER-Passive (Coupler)

      Vol:
    E86-C No:2
      Page(s):
    134-138

    This paper presents a miniaturized reverse-phase hybrid ring by the use of shunt capacitors, and successfully designs a very miniature hybrid ring of a 0.28-wavelength circumference with a wide bandwidth comparable to the regular reverse-phase hybrid ring based on the equivalent admittance approach. Moreover, a method of broadening the bandwidth with adding a matching network consisting of a very short transmission line and two shunt capacitors at each port is also described. The validity of the proposed design is demonstrated by electromagnetic simulator (Sonnet em) for a uniplanar hybrid ring.

  • Motion Detecting Artificial Retina Model by Two-Dimensional Multi-Layered Analog Electronic Circuits

    Masashi KAWAGUCHI  Takashi JIMBO  Masayoshi UMENO  

     
    PAPER

      Vol:
    E86-A No:2
      Page(s):
    387-395

    We propose herein a motion detection artificial vision model which uses analog electronic circuits. The proposed model is comprised of four layers. The first layer is a differentiation circuit of the large CR coefficient, and the second layer is a differentiation circuit of the small CR coefficient. Thus, the speed of the movement object is detected. The third layer is a difference circuit for detecting the movement direction, and the fourth layer is a multiple circuit for detecting pure motion output. When the object moves from left to right the model outputs a positive signal, and when the object moves from right to left the model outputs a negative signal. We first designed a one-dimensional model, which we later enhanced to obtain a two-dimensional model. The model was shown to be capable of detecting a movement object in the image. Using analog electronic circuits, the number of connections decrease and real-time processing becomes feasible. In addition, the proposed model offers excellent fault tolerance. Moreover, the proposed model can be used to detect two or more objects, which is advantageous for detection in an environment in which several objects are moving in multiple directions simultaneously. Thus, the proposed model allows practical, cheap movement sensors to be realized for applications such as the measurement of road traffic volume or counting the number of pedestrians in an area. From a technological viewpoint, the proposed model facilitates clarification of the mechanism of the biomedical vision system, which should enable design and simulation by an analog electric circuit for detecting the movement and speed of objects.

  • Two Types of Polyphase Sequence Sets for Approximately Synchronized CDMA Systems

    Shinya MATSUFUJI  Noriyoshi KUROYANAGI  Naoki SUEHIRO  Pingzhi FAN  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:1
      Page(s):
    229-234

    This paper discusses two types of polyphase sequence sets, which will successfully provide CDMA systems without co-channel interference. One is a type of ZCZ sets, whose periodic auto-correlation functions take zero at continuous shifts on both side of the zero-shift, and periodic cross-ones also take zero at the continuous shifts and the zero-shift. The other is a new type of sets consisting of some subsets of polyphase sequences with zero cross-correlation zone, called ZCCZ sets, whose periodic cross-correlation functions among different subsets have take zero at continuous shifts on both side of the zero-shift including the zero-shift. The former can achieve a mathematical bound, and the latter can have large size.

  • Fractionally Spaced Bayesian Decision Feedback Equalizer

    Katsumi YAMASHITA  Hai LIN  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:1
      Page(s):
    215-220

    The purpose of this paper is to derive a novel fractionally spaced Bayesian decision feedback equalizer (FS-BDFE). The oversampling technique changes single input single output (SISO) linear channel to single input multiple output (SIMO) linear channel. The Bayesian decision variable in the FS-BDFE is defined as the product of Bayesian decision variables in the Bayesian decision feedback equalizers (BDFE) corresponding to each channels of the SIMO. It can be shown that the FS-BDFE has less decision error probability than the conventional BDFE. The effectiveness of the proposed equalizer is also demonstrated by the computer simulation.

  • Numerical Model of Thin-Film Transistors for Circuit Simulation Using Spline Interpolation with Transformation by y=x+log(x)

    Mutsumi KIMURA  Satoshi INOUE  Tatsuya SHIMODA  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E86-C No:1
      Page(s):
    63-70

    A numerical model of thin-film transistors for circuit simulation has been developed. This model utilizes three schemes. First, the spline interpolation with transformation by y=x+log(x) achieves excellent preciseness for both on-current and off-current simultaneously. Second, the square polynomial supplement solves an anomaly near the points where drain voltage equal to zero. Third, the linear extrapolation achieves continuities of the current and its derivatives as a function of voltages out of the area where the spline interpolation is performed, and improves convergence during circuit simulation.

  • Experimental Study on Fully Integrated Active Guard Band Filters for Suppressing Substrate Noise in Sub-Micron CMOS Processes for System-on-a-Chip

    Keiko Makie-FUKUDA  Toshiro TSUKADA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:1
      Page(s):
    89-96

    This paper describes fully integrated active guard band filters for suppressing the substrate coupling noise and their noise suppression effect measured by test chip experiments. The noise cancellation circuit of the active guard band filters simply consists of an inverter and a source follower. The substrate noise suppression effect was measured by using a test chip fabricated in a 0.18 µm CMOS triple-well process for system-on-a-chip. The noise with the filter was less than 5% of that without the filter and the noise suppression effect was observed from 1 MHz to 200 MHz by the statistical measurement of the voltage comparator. The noise suppression effect was also observed for actual digital switching noise produced by digital inverters. Configuration of the active guard band filter was investigated by simulation and it is shown that high and uniform noise suppression effect is achieved by placing the guard bands in the L-shape around the target triple-well area on the p-substrate.

  • Low-Power Architecture of a Digital Matched Filter for Direct-Sequence Spread-Spectrum Systems

    Takashi YAMADA  Shoji GOTO  Norihisa TAKAYAMA  Yoshifumi MATSUSHITA  Yasoo HARADA  Hiroto YASUURA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:1
      Page(s):
    79-88

    In wireless communication systems, low-power metrics is becoming a burdensome problem in the portable terminal design, because of portability constraints. This paper presents design architecture of a low-power Digital Matched Filter (DMF) for the direct-sequence spread-spectrum communication system such as WCDMA or wireless LAN. The proposed approach for power savings focuses on the architecture of the reception registers and the correlation-calculating unit, which dissipate the majority of the power in a DMF. The main features are asynchronous latch clock generation for the reception registers, parallelism of correlation calculation operations and bit manipulation for chip-correlation operations. A DMF is designed in compliance with the WCDMA specifications incorporating the proposed techniques, and its properties are evaluated by computer simulations at the gate level using 0.18-µm CMOS standard cell array technology. As a result, the power consumption of the proposed DMF is estimated to be 9.3 mW (@15.6 MHz, 1.6 V), which is below 40% of the power consumed by a general DMF.

  • Single Flux Quantum Multistage Decimation Filters

    Haruhiro HASEGAWA  Tatsunori HASHIMOTO  Shuichi NAGASAWA  Satoru HIRANO  Kazunori MIYAHARA  Youichi ENOMOTO  

     
    INVITED PAPER-LTS Digital Applications

      Vol:
    E86-C No:1
      Page(s):
    2-8

    We investigated single flux quantum sinc filters with multistage decimation structure in order to realize high-speed sinc filter operation. Second- and third-order (k=2, 3) sinc filters with a decimation factor N=2 were designed and confirmed their proper operations. These sinc filters with N=2 are utilized as elementary circuit blocks of our multistage decimation sinc filters with N=2M, where M indicates the number of the stage of the decimation. As an example of the multistage decimation filter, we designed a k=2, N=4 sinc filter which was formed from a two-stage decimation structure using k=2, N=2 sinc filters, and confirmed its proper operation. The k=2, N=4 sinc filter consisted of 1372 Josephson junctions with the power consumption of 191 µW.

  • Lenient/Strict Batch Verification in Several Groups

    Fumitaka HOSHINO  Masayuki ABE  Tetsutaro KOBAYASHI  

     
    PAPER-Symmetric Ciphers and Hash Functions

      Vol:
    E86-A No:1
      Page(s):
    64-72

    Batch verification is a useful tool in verifying a large number of cryptographic items all at one time. It is especially effective in verifying predicates based on modular exponentiation. In some cases, however the items can be incorrect although they pass batch verification together. Such leniency can be eliminated by checking the domain of each item in advance. With this in mind, we introduce the strict batch verification and investigate if the strict batch verification can remain more effective than separate verification. In this paper, we estimate the efficiency of such strict batch verification in several types of groups, a prime subgroup of Zp with special/random prime p and prime subgroups defined on elliptic curves over Fp, F2m and Fpm, with are often used in DL-based cryptographic primitives. Our analysis concludes that the efficiency differs greatly depending on the choice of the group and parameters determined by the verifying predicate. Furthermore, we even show that there are some cases where batch verification, regardless of strictness, loses its computational advantage.

  • Performance Comparison of Channel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forward Link

    Noriyuki MAEDA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    300-313

    This paper presents a performance comparison of the channel-interleaving method in the frequency domain, i.e., bit interleaving after channel encoding, symbol interleaving after data modulation, and chip interleaving after spreading, for Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) wireless access with frequency domain spreading, in order to reduce the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) and achieve the maximum radio link capacity. Simulation results show that, for QPSK data modulation employing turbo coding with the channel coding rate R=3/4, the chip-interleaving method decreases the required average received Es/N0 the most for various radio parameters and propagation model conditions, where the number of code-multiplexing, Cmux, the spreading factor, SF, the r.m.s. delay spread, σ, the number of multipaths, L, and the maximum Doppler frequency, fD, are varied as parameters. For example, when Cmux=12 of SF=16, the improvement in the required average received Es/N0 from the case without interleaving at the average packet error rate (PER) of 10-2, is approximately 0.3, 0.3, and 1.4 dB for the bit, symbol, and chip interleaving, respectively, in a L=12-path exponential decayed Rayleigh fading channel with σ of 0.043 µsec and fD of 20 Hz. This is because the chip interleaving obtains a higher diversity gain by replacing the chip assignment over the entire bandwidth. Meanwhile, in 16QAM data modulation with R=1/2, the performance of the chip interleaving is deteriorated, when Cmux/SF>0.25, due to the inter-code interference caused by different fading variations over the spreading duration since the successive chips during the spreading duration are interleaved to the separated sub-carriers. Thus, bit interleaving exhibits the best performance although the difference between bit interleaving and symbol interleaving is slight. Consequently, we conclude that the bit-interleaving method is the best among the three interleaving methods for reducing the required received Es/N0 considering the tradeoff between the randomization effect of burst errors and the mitigation of inter-code interference assuming the application of adaptive modulation and channel coding scheme in OFCDM employing frequency domain spreading.

  • Real-Time View-Interpolation System for Super Multi-View 3D Display

    Tadahiko HAMAGUCHI  Toshiaki FUJII  Toshio HONDA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:1
      Page(s):
    109-116

    A 3D display using super high-density multi-view images should enable reproduction of natural stereoscopic views. In the super multi-view display system, viewpoints are sampled at an interval narrower than the diameter of the pupil of a person's eye. With the parallax produced by a single eye, this system can pull out the accommodation of an eye to an object image. We are now working on a real-time view-interpolation system for the super multi-view 3D display. A multi-view camera using convergence capturing to prevent resolution degradation captures multi-view images of an object. Most of the data processing is used for view interpolation and rectification. View interpolation is done using a high-speed image-processing board with digital-signal-processor (DSP) chips or single instruction stream and multiple data streams (SIMD) parallel processor chips. Adaptive filtering of the epipolar plane images (EPIs) is used for the view-interpolation algorithm. The multi-view images are adaptively interpolated using the most suitable filters for the EPIs. Rectification, a preprocess, converts the multi-view images in convergence capturing into the ones in parallel capturing. The use of rectified multi-view images improves the processing speed by limiting the interpolation processing in EPI.

  • A Low-Complexity Face-Assisted Coding Scheme for Low Bit-Rate Video Telephony

    Chia-Wen LIN  Yao-Jen CHANG  Yung-Chang CHEN  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:1
      Page(s):
    101-108

    This paper presents a novel and practical face-assisted video coding scheme to enhance the visual quality of the face region in videophone applications. A low-complexity skin-color-based face detection and tracking scheme is proposed to locate the human face regions in realtime. After classifying the macroblocks (MBs) into the face and non-face regions, we present a dynamic distortion-weighting adjustment (DDWA) scheme to skip encoding the static non-face MBs, and the saved bits are used to compensate the face region by increasing the distortion weighting of the face MBs. The quality of the face regions will thus be largely enhanced. Moreover, the computation originally required for encoding the skipped MBs can also be saved. The experimental results show that the proposed method can significantly improve the PSNR and the subjective quality of face regions, while the degradation introduced on the non-face areas is relatively invisible to human perception. The proposed algorithm is fully compatible with the H. 263 standard, and the low complexity feature makes it well suited to be implemented for real-time applications.

  • A SDM-COFDM Scheme Employing a Simple Feed-Forward Inter-Channel Interference Canceller for MIMO Based Broadband Wireless LANs

    Satoshi KUROSAKI  Yusuke ASAI  Takatoshi SUGIYAMA  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    283-290

    This paper proposes a space division multiplexed - coded orthogonal frequency division multiplexing (SDM-COFDM) scheme for multi-input multi-output (MIMO) based broadband wireless LANs. The proposed scheme reduces inter-channel interference in SDM transmission with a simple feed-forward canceller which multiplies the received symbols by the estimated propagation inverse matrix for each OFDM subcarrier. This paper proposes a new preamble pattern in order to improve power efficiency in the estimation of the propagation matrix. Moreover, the proposed likelihood-weighting scheme, which is based on signal-to-noise power ratio (SNR) of each OFDM subcarrier, improves the error correction performance of soft decision Viterbi decoding. Computer simulation shows that the proposed SDM-COFDM scheme with two transmitting/receiving antennas doubles the transmission rate without increasing the channel bandwidth and achieves almost the same PER performance as the conventional single-channel transmission in frequency selective fading environments. In particular, it achieves more than 100 Mbit/s per 20 MHz by using 64QAM with the coding rate of 3/4.

  • Experiments on Coherent Adaptive Antenna Array Diversity Receiver Based on Antenna-Weight Generation Common to Paths in W-CDMA Reverse Link

    Hidekazu TAOKA  Shinya TANAKA  Taisuke IHARA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    191-205

    This paper presents laboratory and field experimental results of the coherent adaptive antenna array diversity (CAAAD) receiver employing receiver antenna-weight generation common to all Rake-combined paths (hereafter path-common weight generation method) in the W-CDMA reverse link, in order to elucidate the suitability of the path-common weight generation method in high-elevation antenna environments such as cellular systems with a macrocell configuration. Laboratory experiments using multipath fading simulators and RF phase shifters elucidate that even when the ratio of the target Eb/I0 of the desired to interfering users is Δ Eb/I0=-12 dB, the increase in the average transmit Eb/N0 employing the CAAAD receiver coupled with fast transmission power control (TPC) using outer-loop control from that for Δ Eb/I0=0 dB is within only 1.0 dB owing to the accurate beam and null steering associated with fast TPC. Furthermore, field experiments demonstrate that the required transmission power at the average block error rate (BLER) of 10-2 employing the CAAAD receiver with four antennas is reduced by more than 2 dB compared to that using a four-branch space diversity receiver using maximum ratio combining (MRC) with the fading correlation between antennas of 0 when Δ Eb/I0=-15 dB and that the loss in the required transmission power of the CAAAD receiver in the same situation as that in a single-user environment is approximately 1 dB. The field experimental results in an actual propagation environment suggest that the CAAAD receiver is effective in suppressing multiple access interference, thus decreasing the required transmission power when the gap in the direction of arrival between the desired user and interfering users is greater than approximately 20 degrees.

  • Multi-Stage Partial Parallel Interference Cancellation Receivers for Multi-Rate DS-CDMA System

    Seung Hee HAN  Jae Hong LEE  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    170-180

    In this paper, two types of multi-stage partial parallel interference cancellation (PIC) receivers are considered for multi-rate DS-CDMA system: multi-stage PIC receiver with partial cancellation factors and multi-stage PIC receiver with decision thresholds. Bit error rate (BER) of the multi-stage partial PIC receivers is obtained by simulation in a Rayleigh fading channel. It is shown that the multi-stage partial PIC receivers achieve smaller BER than the matched filter (MF) receiver, multi-stage PIC receiver, group-wise successive interference cancellation (GSIC) receiver, and extended GSIC receiver (EGSIC) for the multi-rate DS-CDMA system in a Rayleigh fading channel.

  • Multipath Interference Canceller Employing Multipath Interference Replica Generation with Previously Transmitted Packet Combining for Incremental Redundancy in HSDPA

    Nobuhiko MIKI  Sadayuki ABETA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    142-153

    This paper proposes a multipath interference canceller (MPIC) employing multipath interference (MPI) replica generation (MIG) utilizing previously transmitted packet combining (PTPC), which is well-suited to incremental redundancy, in order to achieve a peak throughput of nearly 8 Mbps in a multipath fading environment in high-speed downlink packet access (HSDPA). In our scheme, more accurate MPI replica generation is possible by generating MPI replicas utilizing the soft-decision symbol sequence of the previously transmitted packets in addition to that of the latest transmitted packet. Computer simulation results elucidate that the achievable throughput of the MPIC employing MIG-PTPC is increased by approximately 100 kbps and 200 kbps and the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) per antenna at the throughput of 0.8 normalized by the maximum throughput is improved by about 0.3 and 0.7 dB compared to that of the MPIC using the soft-decision symbol sequence after Rake combining of the last transmitted packet both in 2- and 3-path Rayleigh fading channels for QPSK and 16QAM data modulations, respectively. Furthermore, we clarify that the maximum peak throughput using the proposed MPIC with MIG-PTPC coupled with incremental redundancy achieves approximately 7 Mbps and 8 Mbps with 16QAM and 64QAM data modulations in a 2-path Rayleigh fading channel, respectively, within a 5-MHz bandwidth.

  • Finite Field Wavelet Spread Signature CDMA in a Multipath Fading Channel

    Jiann-Horng CHEN  Kuen-Tsair LAY  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    122-131

    We propose a new multiple access communication system based on finite field wavelet spread signature (FFWSS). In addition to the function of frequency diversity and multiple access, which are typically provided by traditional spreading codes, the FFWSS spreads data symbols in time, resulting in robustness against frequency selective slow fading. Using the FFWSS to spread a data symbol so that it is overlapped with neighboring symbols, a FFWSS-CDMA system is developed. It is observed that the ratio of the maximum nontrivial value of periodic correlation function to the code length of FFWSS is the same as that of a Sidelnikov sequence. Using RAKE-based receivers, simulation results show that the proposed FFWSS-CDMA system yields lower bit error rate (BER) than conventional DS-CDMA and MT-CDMA systems in multipath fading channels.

  • Effectiveness of Power Control for Approximately Synchronized CDMA System

    Satoshi WAKOH  Hideyuki TORII  Makoto NAKAMURA  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    88-95

    Approximately synchronized CDMA (AS-CDMA) can reduce the inter-channel interference in a cell to zero. This property of AS-CDMA is an advantage over the conventional DS-CDMA. However, the inter-cell interference of the AS-CDMA cellular system has not been sufficiently examined previously. Therefore, the synthetic performance of AS-CDMA cellular system also has not been sufficiently clarified previously. Some factors that affect the inter-cell interference of the AS-CDMA cellular system were theoretically examined, and evaluated by using computer simulation. As the result, we found that transmission power control is effective for reducing the inter-cell interference of the AS-CDMA cellular system. In addition, the synthetic performance of AS-CDMA cellular system was clarified for the first time. Consequently, it was also found that the synthetic performance of the AS-CDMA cellular system is higher than that of the conventional DS-CDMA cellular system.

  • A Proposal of Overfill CDM Transmission Scheme for Future Road-Vehicle Communication Systems

    Kazuyuki SHIMEZAWA  Hiroshi HARADA  Hiroshi SHIRAI  Masayuki FUJISE  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    68-78

    In order to realize a future seamless high-speed road-vehicle communication system, we have proposed using code division multiplexing (CDM) radio transmission scheme by using cyclic shifted-and-extended (CSE) codes as spread codes. As the CSE codes are generated by cyclically shifting and extending a conventionally used code, the number of codes generated from a code is limited to the length of the shift interval and the tolerable period of delayed waves also depends on the length. In this paper, based on CSE codes, we propose a method to minimize the length of the shift interval and a cancellation technique with a simple calculation in order to eliminate the interference from delayed waves caused by the reduction of the length of shift interval. The concept and the BER performances in AWGN, two-paths, and multi-path fading environments are described in this paper. As a result, the maximum transmission rate of CSE-based-CDM transmission per one-code using the newly proposed transmission scheme is 3 times as large as that using conventional CSE codes and DQPSK-CDM transmission scheme.

15061-15080hit(21534hit)