The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] icon(432hit)

401-420hit(432hit)

  • Design of Ultrawide-Band, High-Sensitivity p-i-n Protodetectors

    Kazutoshi KATO  Susumu HATA  Kenji KAWANO  Atsuo KOZEN  

     
    PAPER-Optical/Microwave Devices

      Vol:
    E76-C No:2
      Page(s):
    214-221

    We show the design of the bandwidth and the external quantum efficiency (including the coupling efficency to a single-mode fiber) of p-i-n photodetectors. Based on their design procedures, the performance limits of both conventional surface-illuminated photodetectors and side-illuminated photodetectors are evaluated. We point out that in the ultrawide-band region, optical waveguide photodetectors have great advantages over conventional surface-illuminated photodetectors in terms of the product of the bandwidth and the external quantum efficiency. It is shown that a 100-GHz bandwidth can be achieved with little degradation of the external quantum efficiency by a multimode waveguide photodetector structure. We also present a design concept for overcoming the performance limits of solitary waveguide photodetectors by including an input tapered optical waveguide.

  • Reflection Characteristics of Optically-Controlled Microwave through an Open-Ended Microstrip Line

    Hitoshi SHIMASAKI  Makoto TSUTSUMI  

     
    LETTER-Fiber Optic Radio Links

      Vol:
    E76-C No:2
      Page(s):
    301-304

    This letter discusses a microstrip line with an open-end termination in which the reflected microwaves can be optically controlled by a laser illumination. The frequency characteristics are emphasized rather than the time domain ones. The reflection characteristics have been demonstrated experimentally and theoretically for the frequency range of 24 GHz. In the theoretical treatment both the conductance and the capacitance are considered in the equivalent circuit model of the open end of the strip.

  • Optical Control of Millimeter Waves in the Semiconductor Waveguide

    Makoto TSUTSUMI  Arokiaswami ALPHONES  

     
    INVITED PAPER

      Vol:
    E76-C No:2
      Page(s):
    175-182

    The various propagation characteristics of millimeter waves in silicon rib and image guides containing the optically induced plasma region have been investigated. Phase shift and attenuation properties resulting from the presence of plasma are evaluated using the effective dielectric constant method. Experiments have been carried out to demonstrate the optical control of millimeter waves at frequencies ranging from 3350 GHz using high-resistivity silicon illuminated by a high-power Xenon arc lamp and light emitting diodes. Optical control of millimeter wave attenuation of 20dB has been confirmed for a guide of length 90 mm and plasma density of 1021/m3 with average plasma thickness of 20 µm. To increase the sensitivity of optical control, Bragg reflection filter characteristics are studied and its stop band characteristics have been calculated using the transmission line model, and confirmed experimentally. To further develop the Bragg reflection filter, a Mach-Zehnder interferometer guide with one of the arms periodically corrugated is newly proposed and its optical control performance is confirmed by experiments. Finally the field distributions of the Mach-Zehnder configuration of rib waveguides are measured by a simple optical probing technique using the focused laser spot.

  • Selective Mode-Control with Optically Induced Plasma on Coupled Microstrip Lines with a Tuning Slot

    Yasushi HORII  Tsutomu NAKAMURA  Takeshi NAKAGAWA  Sadao KURAZONO  

     
    PAPER-Optical/Microwave Devices

      Vol:
    E76-C No:2
      Page(s):
    207-213

    For a method to control the microwave coupled lines with optically induced plasma effectively, we propose the selective mode-control method, which restricts controlled modes to a selected one. We analyzed the basic characteristics of coupled microstrip lines theoretically by using the spectral domain technique and indicated the effectiveness of this method with the aid of numerical results. Further, we designed an optically controlled change-over switch as an application of this method.

  • Recent Progress in KrF Excimer Laser Lithography

    Makoto NAKASE  

     
    INVITED PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    26-31

    Reduction in the illumination wavelength for exposure leads to higher resolution while keeping the depth of focus. Thus, KrF excimer laser lithography has been positioned as the next generation lithography tool behind g/i-line optical lithography, and many studies have been investigated. In the early days, the excimer laser lithography had many inherent problems, such as inadequate reliability, difficult maintainability, high operating cost, and low resolution and sensitivity of resist materials. However, the performance of the excimer laser stepper has been improved and chemical amplification resists have been developed for the past decade. At present, KrF excimer lithography has reached the level of trial manufacturing of lower submicron ULSI devices beyond 64 Mbit DRAMs.

  • Low Temperature Poly Si TFT and Liquid Crystal Polymer Composite for Brighter Video Projection System

    Masanori YUKI  

     
    INVITED PAPER-LSI Technology for Opto-Electronics

      Vol:
    E76-C No:1
      Page(s):
    86-89

    This paper reviews the development of low temperature poly Si TFT, scattering light valves addressed by TFTs and a brighter video projection system using them, with the attensin of their optical aspects. The first includes main feature which are laser induced crystallization of PECVD a-Si in almost entirely solid phase by high speed scanning CW Ar laser beam. The second includes photo-polymerization induced phase separation method for the preparation of liquid crystal polymer composite (LCPC) material and scattering light valve with low driving voltage of 6 Vrms. The last gives a brighter video screen image with high contrast ratio and includes higher light efficiency through LCPC light valves and projection lens unit by about four times than that of conventional LC light valves with polarizers.

  • Proposed Optoelectronic Cascadable Multiplier on GaAs LSI

    Kazutoshi NAKAJIMA  Yoshihiko MIZUSHIMA  

     
    PAPER-Integration of Opto-Electronics and LSI Technologies

      Vol:
    E76-C No:1
      Page(s):
    118-123

    An integrated optoelectronic multiplier based on GaAs optoelectronic device technology, is proposed. The key element is an optoelectronic half-adder logic gate, which is composed of only two GaAs metal-semiconductor-metal photodetectors (MSM-PD's). It operates with a single clock delay, less than 100 ps. An optoelectronic full-adder and a multiplier are also composed of half-adders and surface-emitting laser-diodes (SEL's). Cascadable gates with optical interconnections are integrated. Utilizing improved device fabrication technology, an optoelectronic high-speed multiplier with a minimum number of gates will be realized in LSI.

  • C-V Measurement and Simulation of Silicon-Insulator-Silicon (SIS) Structures for Analyzing Charges in Buried Oxides of Bonded SOI Materials

    Kiyoshi MITANI  Hisham Z. MASSOUD  

     
    PAPER-SOI Wafers

      Vol:
    E75-C No:12
      Page(s):
    1421-1429

    Charges in buried oxide layers formed by wafer bonding were evaluated by capacitance-voltage (C-V) measurements. In this study, silicon-insulator-silicon (SIS) and metal-oxide-silicon (MOS) capacitors were fabricated on bonded wafers. For analyzing C-V curves of SIS structures, C-V simulation programs were developed. From the analysis, we conclude that approximately 2 1011/cm2 negative charges were distributed uniformly in the oxide. The effect of the experimental conditions during wafer bonding on generated charges in buried oxides is also discussed.

  • Numerical Analysis of Stability Property of an Optically Injection-Locked Semiconductor Laser Taking Account of Gain Saturation

    Koichi IIYAMA  Ken-ichi HAYASHI  Yoshio IDA  

     
    PAPER-Opto-Electronics

      Vol:
    E75-C No:12
      Page(s):
    1536-1540

    Stability property of an optically injection-locked semiconductor laser taking account of gain saturation is discussed. Numerical analysis shows that stable locking region is broadened due to gain saturation. This is because of rapid damping of relaxation oscillation due to gain saturation. It is also found that stable locking region is also broadened with increasing injection current since damping of relaxation oscillation becomes strong with increasing injection current. Numerical calculations of lasing spectrum show that the magnitude of sidepeaks appeared at harmonics of relaxation oscillation frequency under unstable locking condition are suppressed due to gain saturation.

  • Characteristics of Gas Sensors Using Magnetic Semiconductor Thick Film

    Kyoshiro SEKI  Michiru HORI  Hiroshi OSADA  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E75-C No:10
      Page(s):
    1291-1293

    The preparation of magnetic semiconductor thick film (MST) by means of spray printing and application to a temperature/gas/essence sensor have been proposed. The MST pattern is composed of ferrite, ruthenium compound, carbon black, binder and solvent. After the mixed mgnetic semiconductor fluid is sprayed on a substrate, the sample is sintered at 750. The MST with thickness of 40 µm is printed on the substrate in various shapes such as a plate, a ring or a rod. The magnetic property of MST depends on temperature, and the electrical property responds to gas and natural/artificial fruit essence. Therefore, the multipore ceramic MST operates as a gas sensor with high sensitivity and high stability.

  • Effects of the Gate Polycrystalline Silicon Film on the Characteristics of MOS Capacitor

    Makoto AKIZUKI  Masaki HIRASE  Atsushi SAITA  Hiroyuki AOE  Atsumasa DOI  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    1007-1012

    The quality of polycrystalline silicon films and electrical characteristics of polycrystalline silicon gate metal-oxide-semiconductor (MOS) capacitors were investigated under various processing conditions, including phosphorus doping. The stresses observed in Si films deposited in the amorphous phase show complex behavior during thermal treatment. The stresses in as-deposited Si films are compressive. They change to tensile with annealing at 800, and to compressive after an additional annealing at 900. The kind of charges trapped in the SiO2 film during the negative constant current stress in Polycrystalline silicon gate MOS capacitors differ with the maximum process temperature. The trapped charges of samples annealed at 800 were negative, while those of samples annealed at 900 were positive.

  • Diffusion of Phosphorus in Poly/Single Crystalline Silicon

    Hideaki FUJIWARA  Hideharu NAGASAWA  Atsuhiro NISHIDA  Koji SUZUKI  Kazunobu MAMENO  Kiyoshi YONEDA  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    995-1000

    Diffusion of phosphorus impurities from a polycrystalline silicon films into a silicon substrate was investigated as a function of the mean concentration of phosphorus in a polycrystalline silicon film at the first diffusion stage. We presented that good control of the redistribution of implanted phosphorus impurities was possible by optimizing the normalized dose, which is the value: [the total dose of phosphorus impurities]/[the polycrystalline silicon film thickness], in the case of samples both with and without an arsenic doped layers. In the range where the normalized dose was less than 1.52.51020 cm-3, deeper junctions were formed in samples with an arsenic doped layer. In the range where the normalized dose was more than 1.52.51020 cm-3, however, deeper junctions were formed in samples without any arsenic doped layer rather than in samples with an arsenic doped layer. These results mean that formation of the junction in the device structure where a high concentration phosphorus doped polysilicon layer is stacked on to the high concentration arsenic layer embeded at the surface of the substrate can be restricted by optimizing the normalized dose. Moreover, a trade-off relationship between suppressing phosphorus diffusion and maintaining low contact resistance against normalized doses was also observed.

  • Microcrystalline Silicon in Oxide Matrix Prepared from Partial Oxidation of Anodized Porous Silicon

    Toshimichi OHTA  Osamu ARAKAKI  Toshimichi ITO  Akio HIRAKI  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    1025-1030

    Microcrystalline silicon embedded in silicon oxide has been prepared by means of a wet oxidation of porous silicon (PS) anodically produced from degenerate Si wafers in a HF solution. As the oxidation proceeded, optical absorptions of the PS specimen in the visible light region shifted obviously to the higher energy side. Visible light emission from the oxidized specimen was observed at room temperature with photoexcitation by a He-Cd laser while the as-prepared specimen emitted no visible lights. These results are discussed in relation to the quantum size effect of the microcrystalline silicon confined in the oxide matrix as well as visible emissions from as-prepared specimens produced from non-degenerate Si wafers.

  • Semiconductor Optical Modulator by Using Electron Depleting Absorption Control

    Minoru YAMADA  Kazuhiro NODA  Yuji KUWAMURA  Hirohumi NAKANISHI  Kiyohumi IMAI  

     
    PAPER-Opto-Electronics

      Vol:
    E75-C No:9
      Page(s):
    1063-1070

    Operation of a newly proposed semiconductor optical modulator based on absorption control by electron depletion around a p-n junction is demonstrated, forming preliminary structures of waveguide-type as well as panel-type (or surface-illuminated type) devices. The optical absorption is occurred at the intrinsic energy levels in the band structure not at the extended state into the band-gap. Performance of 35 dB on-off extinction ratio for 4 V variation of the applied voltage was obtained in a waveguide type device. Validity of the proposed mechanism were confirmed by getting large change of the absorption coefficient of around 5000 cm-1 over wide wavelength range of 30 nm.

  • Some Considerations of Transient Negative Photoconductivity in Silicon Doped with Gold

    Hideki KIMURA  Norihisa MATSUMOTO  Koji KANEKO  Yukio AKIBA  Tateki KUROSU  Masamori IIDA  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    1036-1042

    After the intrinsic pulsed light illumination, a transient negative photoconductivity (TRANP) was observed in silicon doped with gold. The ambient temperature dependence of the TRANP-current was measured and compared with the simulated results obtained by solving rate equations. The temperature dependence of the peak value of the TRANP-current was in agreement with the simulated result. The activation energy of gold acceptor level obtained from the time constant in the recovery process was also consistent with the simulation. It was cleared from this result that the recovery process is dominated by the electron re-emission from gold acceptor level to the conduction band. It was concluded that the occurrence of the TRANP is well explained by using our model proposed before.

  • Direct Photo Chemical Vapor Deposition of Silicon Nitride and Its Application to MIS Structre

    Masahiro YOSHIMOTO  Kenji TAKUBO  Takashi SAITO  Tetsuya OHTSUKI  Michio KOMODA  Hiroyuki MATSUNAMI  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    1019-1024

    Silicon nitride (SiNx) films have been deposited at lower substrate temperatures (500) by direct (without mercury-sensitization) photo-chemical vapor deposition (photo-CVD) using SiH4 and NH3 with a low-pressure mercury lamp. Films deposited at around 350 have a polymeric structure such as (Si(NH)2)n. Films deposited at 500 were close to stoichiometric Si3N4 with a slight amount of hydrogen. The refractive index and the dielectric constant of films deposited at 500 became almost equal to the values of thermally synthesized Si3N4. The resistivity was as high as 51016 Ωcm. The minimum density of interface states in Al/SiNx/Si MIS (metal-insulator-semiconductor) diodes was estimated to be 91010 cm-2eV-1 by a quasi-static capacitance-voltage measurement. For SiNx films deposited at 300, the density of interface states, which was in the order of 1011 cm-2eV-1 as deposited, decreased by a rapid thermal anneal after the deposition. For Al/SiNx/InP MIS diodes, it was 31011 cm-2eV-1 by high-frequency capacitance-voltage measurements. Direct photo-CVD for SiNx films is promising for low-temperature formation of a gate insulator.

  • Modeling Three Dimensional Effects in CMOS Latch-up

    Abhijit BANDYOPADHYAY  A. B. BHATTACHARYYA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E75-C No:8
      Page(s):
    943-952

    In this paper the three dimensional (3-D) effect on CMOS latch-up is modeled using a graphical technique based on the fundamental principle of "charge neutrality or its current continuity equivalent" in the base region of parasitic transistors involved in latch-up. The graphical generation of the complete latch-up I-V characteristic requires as an input the SPICE parameters of the relevant bipolar and MOS transistors, the values of shunt resistances and the reverse current-voltage characteristic of the well-substrate junction. The infiuence of the MOS transistor shunting the parasitic bipolar transistors has received special attention. The nonideal scaling of the parasitic resistances has been observed to be the most crucial parameter determining the 3-D nature of the device. The proposed model is validated with test-structures fabricated in 2 µm bulk CMOS technology at and above room temperature. SAFE space map is constructed with width W as a parameter.

  • A New Cleaning Solution for Metallic Impurities on the Silicon Wafer Surface

    Tsugio SHIMONO  Mikio TSUJI  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    812-815

    A new cleaning solution (FPM; HF-H2O2-H2O) was investigated in order to remove effectively metallic impurities on the silicon wafer surface. The removability of metallic impurities on the wafer surface and the concentrations of metallic impurities adsorbed on the wafer surface from each contaminated cleaning solution were compared between FPM and conventional cleaning solutions, such as HPM (HCl-H2O2-H2O), SPM (H2SO4-H2O2), DHF (HF-H2O) and APM (NH4OH-H2O2-H2O). This new cleaning solution had higher removability of metallic impurities than conventional ones. Adsorption of some kinds of metallic impurities onto the wafer surface was a serious problem for conventional cleaning solutions. This problem was solved by the use of FPM. FPM was important not only as a cleaning solution for metallic impurities, but also as an etchant. Furthemore, this new cleaning solution made possible to construct a simple cleaning system, because the concentrations of HF and H2O2 are good to be less than 1% for each, and it can be used at room temperature.

  • Reaction of H-Terminated Si(100) Surfaces with Oxidizer in the Heating and Cooling Process

    Norikuni YABUMOTO  Yukio KOMINE  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    770-773

    Thermal desorption spectroscopy (TDS) is applied to analyze the oxidation reactions of hydrogen-terminated Si(100) surfaces in both the heating and cooling processes after hydrogen desorption. The oxidation reaction of oxygen and water with a silicon surface after hydrogen desorption shows hysteresis in the heating and cooling processes. In the cooling process, oxidation finishes when the silicon surface is adequately oxidized to about a 10 thickness. Oxidation continues to occur at lower temperatures when the total volume of oxygen and water is too small to saturate the bare silicon surface. The reaction of water with silicon releases hydrogen at more than 500. Hydrogen does not adsorb on the silicon oxide surface. A trace amount of oxygen, less than 110-6 Torr, roughens the surface.

  • Chemical Structures of Native Oxides Formed during Wet Chemical Treatments of Silicon Surfaces

    Hiroki OGAWA  Takeo HATTORI  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    774-780

    Chemical structures of native oxides formed during wet chemical treatments of silicon surfaces were investigated using X-ray Photoelectron Spectroscopy (XPS) and Fourier Transformed Infrared. Attenuated Total Reflection (FT-IR-ATR). It was found that the amounts of Si-H bonds in native oxide and at native oxide/ silicon interface are negligibly small in the case of native oxides formed in H2SO4-H2O2 solution. Based on this discovery, it was found that native oxides can be characterized by the amount of Si-H bonds in the native oxide and the combination of various wet chemical treatments with the treatment in NH4OH-H2O2-H2O solution results in the drastic decrease in the amount of Si-H bonds in the native oxides.

401-420hit(432hit)