The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] icon(432hit)

341-360hit(432hit)

  • Visible Light Emission from Nanocrystalline Silicon Embedded in CaF2 Layers on Si(111)

    Masahiro WATANABE  Fumitaka IIZUKA  Masahiro ASADA  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1562-1567

    We report on the formation technique and the first observation of visible light emission from silicon nanoparticles (<10nm) embedded in CaF22 Iayers grown on Si(111) substrates by using codeposition of Si and CaF2. It is shown that the size and density of silicon particles embedded in the CaF2 layer can be controlled by varying the substrate temperature and the evaporation rates of CaF2 and Si. The photoluminescence (PL) spectra of Si nanoparticles embedded in CaF2 thin films were investigated. The blue or green light emissions obtained using a He-Cd laser (λ=325nm) could be seen with the naked eye even at room temperature for the first time. It is shown that the PL intensity strongly depends on growth conditions such as the Si:CaF2 flux ratio and the growth temperature. The PL spectra were also changed by in situ annealing process. These phenomena can be explained qualitatively by the quantum size effect of Si nanoparticles embedded in CaF2 barriers.

  • The Long-Term Charge Storage Mechanism of Silicon Dioxide Electrets for Microsystems

    Mitsuo ICHIYA  Takuro NAKAMURA  Shuji NAKATA  Jacques LEWINER  

     
    PAPER-Materials

      Vol:
    E79-C No:10
      Page(s):
    1462-1466

    In order to improve the sensitivity of micromachined sensors applied with electrostatic fields and increase their actuated force of electrostatic micromachined actuators, "electrets," which are dielectrics carrying non equilibrium permanent space charges of polarization distribution, are very important. In this paper, positively corona charged silicon dioxide electrets, which are deposited by Plasma Chemical Vapor Deposition (PCVD) and thermally oxidized, are investigated. Physical studies will be described, in which the charge stability is correlated to Thermally Stimulated Current (TSC) measurements and to Electron Spin Resonance (ESR) analysis. Some intrinsic differences have been observed between materials. The electrets with superior long-term charge stability contain 10,000 times as much E' center (Si3 as the ones with inferior long-term charge stability. Finally, some investigations on the long-term charge storage mechanism of the positively charged silicon dioxide electret will be described.

  • Characteristics of a-Si Thin-Film Transistors with an Inorganic Black Matrix on the Top

    Yoshimine KATO  Yuki MIYOSHI  Masakazu ATSUMI  Yoshimasa KAIDA  Steven L. WRIGHT  Lauren F. PALMATEER  

     
    PAPER

      Vol:
    E79-C No:8
      Page(s):
    1091-1096

    The characteristics of a-Si bottom-gate TFT test devices with several kinds of inorganic "quasi-black matrix," such as metal, semiconductor, and insulator, on the top were investigated for various black matrix(BM) resistivities. In the Ia-Vg characteristics, for a BM sheet resistance of about1 1012 Ω/, a high off current and large Vth shift were observed due to the back-gating effects when the BM is charged up. Accrding to the ac dynamic characteristics, there was almost no leakage due to the capacitive coupling between source and drain after 16.6 msec(one frame) when the BM sheet resistance was above 7 1013 Ω/ . It was found that hydrogenated amorphous silicon germanium(a-SiGe:H) film, which has enough optical density, with the sheet resistance above the order of 1014 Ω/ is a promising candidate for an inorganic BM on TFT array.

  • A 24 cm Diagonal TFT-LCD Fabricated Using a Simplified, Four-Photolithographic Mask Process

    Kikuo ONO  Takashi SUZUKI  Hiroki SAKUTA  Kenichi ONISAWA  Minoru HIROSHIMA  Tooru SASAKI  Makoto TSUMURA  Nobutake KONISHI  

     
    PAPER

      Vol:
    E79-C No:8
      Page(s):
    1097-1102

    Amorphous silicon thin film transistors(a-Si TFTs) with a channel-etched structure were fabricated. The key technologies to realize these simple-process TFTs were 1) fabricating data lines and pixel electrodes of indium tin oxide(ITO); 2) carrying out tapered dry etching of plural layers of the a-Si and gate insulator silicon nitide; and 3) forming silicide layer to reduce the contact resistance between the phosphorousdoped a-Si and ITO. Excellent image quality, with a high contrast ratio of more than 100: 1, was obtained for video graphic array(VGA) mode TFT-LCDs using a dot inversion driving method. Furthermore, the transmission distribution was uniform with less than a 4.5% deviation on the whole display area although the ITO data line resistances were as large as 120 kΩ per line.

  • Effect of Silicone Vapour Concentration and Its Polymerization Degree on Electrical Contact Failure

    Terutaka TAMAI  Mikio ARAMATA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E79-C No:8
      Page(s):
    1137-1143

    The effect of silicone vapour concentration on the contact failure was examined by using micro relays and motor brush-slip ring(commutator) contacts, [(CH3) 2SiO]4: D4 was used as a vapour source of silicone contamination. Because the influence of the vapour of the silicone on the contact surface can not be avoided at all times due to its gradual evaporation in the atmosphere. The contact failure caused by the silicone vapour was confirmed as formation of SiO2 on the contact surfaceby analysis of EPMA and XPS. A minimum limiting concentration level which does not affect contact reliability was found. This limiting level was 10 ppm(O.13mg/l). Validity of the limiting level was confirmed by the relationships among concentration, temperature, SiO2 film thickness and contact resistance. Furthermore, the effect of the degree of silicone polymerization on the limiting concentration was derived by an empirical formula. This silicone is found to have polymerization degree larger than D7: n=7. These results were confirmed by the contact failure data due to the silicone contamination.

  • Marker Alignment Method for Passive Laser Coupling on Silicon Waferboard

    Seimi SASAKI  Gohji NAKAGAWA  Kazuhiro TANAKA  Kazunori MIURA  Mituhiro YANO  

     
    LETTER

      Vol:
    E79-B No:7
      Page(s):
    939-942

    We proposed a new marker design for passive alignment of a laser to a fiber on a silicon waferboard. Our fiducial marker is simple form and easy to fabricate. With a unique marker design, high accurate positioning of the laser chip is easily achieved using a conventional flip-chip bonder. We have successfully fabricated laser modules with uniform coupling, within 1 dB for a flat end single-mode fiber and within 2 dB for a hemispherical end fiber. This assembly method offers the potential for low-cost optical module packaging.

  • Effects of 50 to 200-keV Electrons by BEASTLI Method on Semiconductor Devices

    Fumio MIZUNO  Satoru YAMADA  Tsunao ONO  

     
    PAPER-Device Issues

      Vol:
    E79-C No:3
      Page(s):
    392-397

    We studied effects of 50-200-keV electrons on semiconductor devices using BEASTLI (backscattered electron assisting LSI inspection) method. When irradiating semiconduc-tor devices with such high-energy electrons, we have to note two phenomena. The first is surface charging and the second is device damage. In our study of surface charging, we found that a net positive charge was formed on the device surface. The positive surface charges do not cause serious influence for observation so that we can inspect wafers without problems. The positive surface charging may be brought about because most incident electrons penetrate the device layer and reach the conducting substrate of the semiconductor device. For the device damage, we studied MOS devices which were sensitive to electron-beam irradiation. By applying a 400- annealing to electron-beam irradiated MOS devices, we could restore the initial characteris-tics of MOS devices. However, in order to recover hot-carrier degradation due to neutral traps, we had to apply a 900- annealing to the electron-beam irradiated MOS devices. Thus, BEASTLI could be successfully used by providing an apporopri-ate annealing to the electron-beam irradiated MOS devices.

  • Sizes and Numbers of Particles Being Capable of Causing Pattern Defects in Semiconductor Device Manufacturing

    Mototaka KAMOSHIDA  Hirotomo INUI  Toshiyuki OHTA  Kunihiko KASAMA  

     
    INVITED PAPER

      Vol:
    E79-C No:3
      Page(s):
    264-271

    The scaling laws between the design rules and the smallest sizes and numbers of particles capable of causing pattern defects and scrapping dies in semiconductor device manufacturing are described. Simulation with electromagnetic waveguide model indicates the possibility that particles, the sizes of which are of comparable order or even smaller than the wavelength of the lithography irradiation sources, are capable of causing pattern defects. For example, in the future 0.25 µm-design-rule era, the critical sizes of Si, Al, and SiO2 particles are simulated as 120 nm 120 nm, 120 nm 120 nm, and 560 nm 560 nm, respectively, in the case of 0.7 µm-thick chemically-amplified positive photoresist with 47 nm-thick top anti-reflective coating films. Future giga-scale integration era is also predicted.

  • High-Resolution Wafer Inspection Using the "in-lens SEM"

    Fumio MIZUNO  Satoru YAMADA  Tadashi OHTAKA  Nobuo TSUMAKI  Toshifumi KOIKE  

     
    PAPER-Particle/Defect Control and Analysis

      Vol:
    E79-C No:3
      Page(s):
    317-323

    A new electron-beam wafer inspection system has been developed. The system has a resolution of 5 nm or better, and is applicable to quarter-micron devices such as 256 Mbit DRAMs. The most remarkable feature of this system is that a specimen stage is built in the objective lens and allows a working distance (WD) of 0. "WD=0"minimizes the effect of lens aberrations, and maximizes the resolving power. Innovative designs to achieve WD=0 are as follows: (1)A large objective lens of 730-mm width 730-mm depth 620-mm height that serves as a specimen chamber, has been developed. (2)A hollow specimen stage made of non-magnetic materials has been developed.It allows the lower pole piece and magnetic coile of the objective lens inside it. (3)Acoustic motors made of non-magnetic materials are em-ployed for use in vacuum.

  • Yield Prediction Method Considering the Effect of Particles on Sub-Micron Patterning

    Nobuyoshi HATTORI  Masahiko IKENO  Hitoshi NAGATA  

     
    PAPER-CIM/CAM

      Vol:
    E79-C No:3
      Page(s):
    277-281

    A new yield prediction model has been developed, which can successfully describe the actual chip fabrication yield. It basically consists of modeling of particles deposited on wafer surface, considering the change in their size and spatial distribution due to the subsequent processing steps and a new concept of virtual line width in pattern layouts. It is confirmed that this yield prediction model serves as an effective navigator for improvement/optimization of fabrication lines such as pointing out the process step/equipments to be modified for yield improvements.

  • Test Structures and a Modified Transmission Line Pulse System for the Study of Electrostatic Discharge

    Robert A. ASHTON  

     
    PAPER-Device and Circuit Characterization

      Vol:
    E79-C No:2
      Page(s):
    158-164

    ElectroStatic Discharge (ESD) testing of integrated circuits subjects circuit elements to very high currents for short periods of time. A modified Transmission Line Pulse (TLP) measurement system for characterizing transistors and other circuit elements under high currents for ESD performance prediction and understanding is presented which can both stress devices and measure leakage. For the TLP system to yield useful information test structures are needed which vary the important design parameters for the circuit elements. Guidelines for transistor test structure design for use with the system are presented and demonstrated for PMOS transistors.

  • Test Structure for the Evaluation of Si Substrates

    Yoshiko YOSHIDA  Mikihiro KIMURA  Morihiko KUME  Hidekazu YAMAMOTO  Hiroshi KOYAMA  

     
    PAPER-SOI & Material Characterization

      Vol:
    E79-C No:2
      Page(s):
    192-197

    The quality of Si substrates affecting the oxide reliability was investigated using various kinds of test structures like flat capacitor, field edge array and gate edge array. The field edge array test structure which resembles the conditions found for real device is shown to be quite effective to determine the quality of oxides. Oxide grown on a P type epitaxial layer on P+ silicon substrate shows the highest reliability in all test structures. Gettering of heavy metals and/or crystal defects by the P+ silicon substrate is the dominant mechanism for the improvement of the oxide reliability. H2 annealed silicon shows a good reliability if monitored using the flat capacitor. However, using the field edge array test structure, which is strongly influenced by real device process, the reliability of the oxide grown on H2 annealed silicon degrades.

  • Gb/s-Range Semiconductor and Ti:LiNbO3 Guided-Wave Optical Modulators.

    Keiro KOMATSU  Rangaraj MADABHUSHI  

     
    INVITED PAPER-Optomicrowave Devices

      Vol:
    E79-C No:1
      Page(s):
    3-13

    External modulators, which have smaller chirping characteristics than laser diode direct modulation, are desired for high-speed and long-distance optical fiber communication systems. This paper reviews semiconductor and Ti:LiNbO3 guided-wave high-speed optical modulators. Since several effects exist for semiconductor materials, various kinds of semiconductor optical modulators have been investigated. Among these, absorption type intensity modulators based on Franz-Keldysh effect in bulk materials and quantum confined stark effect in multiple quantum well materials, are promising because of compactness, low drive voltage nature and integration ease with DFB lasers. Recent progress on semiconductor absorption modulators and DFB-LD integrated semiconductor modulators is discussed with emphasis on a novel fabrication method using selective area growth by MOVPE (Metal Organic Vapor Phase Epitaxy). The Ti:LiNbO3 optical modulators are also important, due to the advantage of superior chirping characteristics and wide bandwidth. Since the Ti:LiNbO3 optical modulator has low propagation loss and low conductor loss natures for optical waves and microwaves, respectively, the traveling-wave electrode configuration is suitable for high-speed operation. Here, broadband Ti:LiNbO3 optical modulators are discussed with emphasis on traveling-wave electrode design.

  • Thermal Noise in Silicon Bipolar Transistors and Circuits for Low-Current Operation--Part : Compact Device Model--

    Yevgeny V. MAMONTOV  Magnus WILLANDER  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:12
      Page(s):
    1761-1772

    This work deals with thermal-noise modeling for silicon vertical bipolar junction transistors (BJTs) and relevant integrated circuits (ICs) operating at low currents. The two-junction BJT compact model is consistently derived from the thermal-noise generalization of the Shockley semiconductor equations developed in work which treats thermal noise as the noise associated with carrier velocity fluctuations. This model describes BJT with the Itô non-linear stochastic-differential-equation (SDE) system and is suitable for large-signal large-fluctuation analysis. It is shown that thermal noise in silicon p-n-junction diode contributes to "microplasma" noise. The above model opens way for a consistent-modeling-based design/optimization of bipolar device noise performance with the help of theory of Itô's SDEs.

  • Process and Device Technologies for High Speed Self-Aligned Bipolar Transistors

    Tohru NAKAMURA  Takeo SHIBA  Takahiro ONAI  Takashi UCHINO  Yukihiro KIYOTA  Katsuyoshi WASHIO  Noriyuki HOMMA  

     
    INVITED PAPER

      Vol:
    E78-C No:9
      Page(s):
    1154-1164

    Recent high-speed bipolar technologies based on SICOS (Sidewall Base Contact Structure) transistors are reviewed. Bipolar device structures that include polysilicon are key technologies for improving circuit characteristics. As the characteristics of the upward operated SICOS transistors are close to those of downward transistors, they can easily be applied in memory cells which have near-perfect soft-error-immunity. Newly developed process technologies for making shallow base and emitter junctions to improve circuit performance are also reviewed. Finally, complementary bipolar technology for low-power and high-speed circuits using pnp transistors, and a quasi-drift base transistor structure suitable for below 0.1 µm emitters are discussed.

  • High Fmax AlGaAs/GaAs HBTs with Pt/Ti/Pt/Au Base Contacts for DC to 40 GHz Broadband Amplifiers

    Tohru SUGIYAMA  Yasuhiko KURIYAMA  Norio IIZUKA  Kunio TSUDA  Kouhei MORIZUKA  Masao OBARA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    944-948

    A low contact resistivity of 4.410-7 Ωcm2 for AlGaAs/GaAs HBTs was realized using Pt/Ti/Pt/Au base metal and a 81019 cm-3 highly-doped base. A high fmax of 170 GHz was achieved by reducing a base resistance. The formation of oxide-free interface between an AlGaAs graded base and Pt-based metal was demonstrated with Auger electron spectroscopy. The optimization of the growth condition conquered the rapid current-induced degradation in the highly Be-doped HBTs. An extremely wide bandwidth of 40 GHz was attained by a Darlington feeback amplifier fabricated using these high-fmax HBTs. These properties indicate that the application of AlGaAs/GaAs HBTs can be expected to extend to future ultrahigh-speed optical transmission systems.

  • 3.0 Gb/s, 272 mW, 8:1 Multiplexer and 4.1 Gb/s, 388 mW, 1:8 Demultiplexer

    Kimio UEDA  Nagisa SASAKI  Hisayasu SATO  Shunji KUBO  Koichiro MASHIKO  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:7
      Page(s):
    866-872

    This paper describes an 8:1 multiplexer and a 1:8 demultiplexer for fiber optic transmission systems. These chips incorporate new architectures having a smaller hardware and enabling the use of a lower supply voltage. The multiplexer and the demultiplexer are fabricated using 0.8 µm silicon-bipolar process with a double polysilicon self-aligned structure. The multiplexer operates at a bit rate of up to 3.0 Gb/s, while the demultiplexer operates at a bit rate of up to 4.1 Gb/s. The multiplexer consumes 272 mW and the demultiplexer consumes 388 mW under the power supplies of VEE=-4.0 V and VTT=-2.0 V. These values are the smallest so far above 2.5 Gb/s which is the standard of the Level-16 of the synchronous transfer mode (STM-16).

  • A Structured Video Handling Technique for Multimedia Systems

    Yoshinobu TONOMURA  Akihito AKUTSU  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:6
      Page(s):
    764-777

    This paper proposes a functional video handling technique based on structured video. The video handling architecture, which includes a video data structure, file management structure, and visual interface structure, is introduced as the core concept of this technique. One of the key features of this architecture is that the newly proposed video indexing method is performed automatically based on image processing. The video data structure, which plays an important role in the architecture, has two kinds of data structures: content and node. The central idea behind these structures is to separate the video contents from the processing operations and to create links between them. Video indexes work as a backend mechanism in structuring video content. A prototype video handling system called the MediaBENCH, a hypermedia basic environment for computer and human interactions, which demonstrates the actual implementation of the proposed concept and technique, is described. Basic functions such as browsing and editing, which are achieved based on the architecture, exhibit the advantages of structured video handling. The concept and the methods proposed in this paper assure various video-computer applications, which will play major roles in the multimedia field.

  • Three-Dimensional Microfabrication of Single-Crystal Silicon by Plasma Etching

    Tomoaki GOTO  Kouji MATSUSHITA  Katsumi HIRONO  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    167-173

    A conventional anode coupled plasma etching process has been developed to etch 300 µm-deep cavities and 600 µm-through holes with nearly vertical sidewalls into single crystal silicon. An optimized SF6/O2 gas mixture results in a nearly vertical etching profile. A silicon wafer was fabricated with a large number of cavities and through holes with less than 1 percent uniformity. It was also experimentally confirmed that this process can be used to etch vertical cavities and through holes in single-crystal silicon with any orientation. This process has the advantage of unlimited etching depth and etching patterns. Advantages in mechanical strength are obtained because a micro-curve is formed at the bottom edge of the cavities. This etching process developed on a conventional plasma etching system was utilized to fabricate a torsional vibrator that consists of single-crystal silicon and Pyrex glass.

  • Evaluation of Antenna Factor of Biconical Antennas for EMC Measurements

    Koichi GYODA  Yukio YAMANAKA  Takashi SHINOZUKA  Akira SUGIURA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    268-272

    Broadband antennas such as biconical antennas and log-periodic dipole antennas are generally used in automatic EMC measurements. However, these broadband antennas have not been used for accurate measurement because accurate specifications for them are lacking. Therefore, more accurate analysis is urgently required by the CISPR (International Special Committee on Radio Interference), to establish the specifications for broadband antennas for EMC measurements. In this paper, the AF of biconical antennas is calculated by using Moment Methods. The frequency characteristics and antenna height dependency of AF are presented. AF is also measured and compared to the data obtained by the calculations. Good agreement between the calculations and measurements is achieved, indicating the usefulness of our computation method. In addition, the effect of antenna separation distance and transmitting antenna height on AF is investigated. The calculated AF deviation from the reference value is nearly 0dB except for certain antenna arrangements. In these antenna arrangements, the field becomes null at the receiving antenna and widely varies in magnitude and phase around the null points. Therefore, the antenna is immersed in a non-uniform field, while the AF is defined on the assumption of a uniform field. Consequently, the erroneous AF will be derived from measurements around these null points and it will be greatly different from that obtained at other antenna heights. Thus, it is better to avoid these conditions during actual measurements. The effect of the ground plane on AF is also evaluated. AF is shown to be seriously affected by the ground plane especially at frequencies around 90MHz. It should be noted that AF deviation has crests corresponding to the null field at 300MHz. The obtained data will be useful in establishing specifications of biconical antennas for EMC measurements.

341-360hit(432hit)