The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.48

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E96-A No.10  (Publication Date:2013/10/01)

    Special Section on Sparsity-aware Signal Processing
  • FOREWORD

    Hiroshi SAWADA  

     
    FOREWORD

      Page(s):
    1917-1917
  • Exploiting Group Sparsity in Nonlinear Acoustic Echo Cancellation by Adaptive Proximal Forward-Backward Splitting

    Hiroki KURODA  Shunsuke ONO  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER

      Page(s):
    1918-1927

    In this paper, we propose a use of the group sparsity in adaptive learning of second-order Volterra filters for the nonlinear acoustic echo cancellation problem. The group sparsity indicates sparsity across the groups, i.e., a vector is separated into some groups, and most of groups only contain approximately zero-valued entries. First, we provide a theoretical evidence that the second-order Volterra systems tend to have the group sparsity under natural assumptions. Next, we propose an algorithm by applying the adaptive proximal forward-backward splitting method to a carefully designed cost function to exploit the group sparsity effectively. The designed cost function is the sum of the weighted group l1 norm which promotes the group sparsity and a weighted sum of squared distances to data-fidelity sets used in adaptive filtering algorithms. Finally, Numerical examples show that the proposed method outperforms a sparsity-aware algorithm in both the system-mismatch and the echo return loss enhancement.

  • Bayesian Nonparametric Approach to Blind Separation of Infinitely Many Sparse Sources

    Hirokazu KAMEOKA  Misa SATO  Takuma ONO  Nobutaka ONO  Shigeki SAGAYAMA  

     
    PAPER

      Page(s):
    1928-1937

    This paper deals with the problem of underdetermined blind source separation (BSS) where the number of sources is unknown. We propose a BSS approach that simultaneously estimates the number of sources, separates the sources based on the sparseness of speech, estimates the direction of arrival of each source, and performs permutation alignment. We confirmed experimentally that reasonably good separation was obtained with the present method without specifying the number of sources.

  • Speaker Recognition Using Sparse Probabilistic Linear Discriminant Analysis

    Hai YANG  Yunfei XU  Qinwei ZHAO  Ruohua ZHOU  Yonghong YAN  

     
    PAPER

      Page(s):
    1938-1945

    Sparse representation has been studied within the field of signal processing as a means of providing a compact form of signal representation. This paper introduces a sparse representation based framework named Sparse Probabilistic Linear Discriminant Analysis in speaker recognition. In this latent variable model, probabilistic linear discriminant analysis is modified to obtain an algorithm for learning overcomplete sparse representations by replacing the Gaussian prior on the factors with Laplace prior that encourages sparseness. For a given speaker signal, the dictionary obtained from this model has good representational power while supporting optimal discrimination of the classes. An expectation-maximization algorithm is derived to train the model with a variational approximation to a range of heavy-tailed distributions whose limit is the Laplace. The variational approximation is also used to compute the likelihood ratio score of all trials of speakers. This approach performed well on the core-extended conditions of the NIST 2010 Speaker Recognition Evaluation, and is competitive compared to the Gaussian Probabilistic Linear Discriminant Analysis, in terms of normalized Decision Cost Function and Equal Error Rate.

  • Exemplar-Based Voice Conversion Using Sparse Representation in Noisy Environments

    Ryoichi TAKASHIMA  Tetsuya TAKIGUCHI  Yasuo ARIKI  

     
    PAPER

      Page(s):
    1946-1953

    This paper presents a voice conversion (VC) technique for noisy environments, where parallel exemplars are introduced to encode the source speech signal and synthesize the target speech signal. The parallel exemplars (dictionary) consist of the source exemplars and target exemplars, having the same texts uttered by the source and target speakers. The input source signal is decomposed into the source exemplars, noise exemplars and their weights (activities). Then, by using the weights of the source exemplars, the converted signal is constructed from the target exemplars. We carried out speaker conversion tasks using clean speech data and noise-added speech data. The effectiveness of this method was confirmed by comparing its effectiveness with that of a conventional Gaussian Mixture Model (GMM)-based method.

  • Image Restoration with Multiple DirLOTs

    Natsuki AIZAWA  Shogo MURAMATSU  Masahiro YUKAWA  

     
    PAPER

      Page(s):
    1954-1961

    A directional lapped orthogonal transform (DirLOT) is an orthonormal transform of which basis is allowed to be anisotropic with the symmetric, real-valued and compact-support property. Due to its directional property, DirLOT is superior to the existing separable transforms such as DCT and DWT in expressing diagonal edges and textures. The goal of this paper is to enhance the ability of DirLOT further. To achieve this goal, we propose a novel image restoration technique using multiple DirLOTs. This paper generalizes an image denoising technique in [1], and expands the application of multiple DirLOTs by introducing linear degradation operator P. The idea is to use multiple DirLOTs to construct a redundant dictionary. More precisely, the redundant dictionary is constructed as a union of symmetric orthonormal discrete wavelet transforms generated by DirLOTs. To select atoms fitting a target image from the dictionary, we formulate an image restoration problem as an l1-regularized least square problem, which can efficiently be solved by the iterative-shrinkage/thresholding algorithm (ISTA). The proposed technique is beneficial in expressing multiple directions of edges/textures. Simulation results show that the proposed technique significantly outperforms the non-subsampled Haar wavelet transform for deblurring, super-resolution, and inpainting.

  • High Resolution 2-D DOA Estimation by Low-Cost Antenna Array Based on Synthesized Covariance Matrix via Antenna Switching

    Yuki DOI  Hiroki MORIYA  Koichi ICHIGE  Hiroyuki ARAI  Takahiro HAYASHI  Hiromi MATSUNO  Masayuki NAKANO  

     
    PAPER

      Page(s):
    1962-1971

    This paper presents a method of synthesizing covariance matrix elements of array input signal for high resolution 2-D Direction-Of-Arrival (DOA) estimation via antenna (sensor) switching. Antenna array generally has the same number of array elements and receiver modules which often leads large receiver hardware cost. Two of the authors have already studied a way of antenna switching to reduce receiver cost, but it can be applied only for periodic incident signals like sinusoid. In this paper, we propose two simple methods of DOA estimation from sparse data by synthesizing covariance matrix elements of array input signal via antenna switching, which can also be applied to DOA estimation of antiperiodic incident signals. Performance of the proposed approach is evaluated in detail through some computer simulation.

  • Sampling Signals with Finite Rate of Innovation and Recovery by Maximum Likelihood Estimation

    Akira HIRABAYASHI  Yosuke HIRONAGA  Laurent CONDAT  

     
    PAPER

      Page(s):
    1972-1979

    We propose a maximum likelihood estimation approach for the recovery of continuously-defined sparse signals from noisy measurements, in particular periodic sequences of Diracs, derivatives of Diracs and piecewise polynomials. The conventional approach for this problem is based on least-squares (a.k.a. annihilating filter method) and Cadzow denoising. It requires more measurements than the number of unknown parameters and mistakenly splits the derivatives of Diracs into several Diracs at different positions. Moreover, Cadzow denoising does not guarantee any optimality. The proposed approach based on maximum likelihood estimation solves all of these problems. Since the corresponding log-likelihood function is non-convex, we exploit the stochastic method called particle swarm optimization (PSO) to find the global solution. Simulation results confirm the effectiveness of the proposed approach, for a reasonable computational cost.

  • Online Sparse Volterra System Identification Using Projections onto Weighted l1 Balls

    Tae-Ho JUNG  Jung-Hee KIM  Joon-Hyuk CHANG  Sang Won NAM  

     
    PAPER

      Page(s):
    1980-1983

    In this paper, online sparse Volterra system identification is proposed. For that purpose, the conventional adaptive projection-based algorithm with weighted l1 balls (APWL1) is revisited for nonlinear system identification, whereby the linear-in-parameters nature of Volterra systems is utilized. Compared with sparsity-aware recursive least squares (RLS) based algorithms, requiring higher computational complexity and showing faster convergence and lower steady-state error due to their long memory in time-invariant cases, the proposed approach yields better tracking capability in time-varying cases due to short-term data dependence in updating the weight. Also, when N is the number of sparse Volterra kernels and q is the number of input vectors involved to update the weight, the proposed algorithm requires O(qN) multiplication complexity and O(Nlog 2N) sorting-operation complexity. Furthermore, sparsity-aware least mean-squares and affine projection based algorithms are also tested.

  • Regular Section
  • Effects of Channel Features on Parameters of Genetic Algorithm for MIMO Detection

    Kazi OBAIDULLAH  Constantin SIRITEANU  Shingo YOSHIZAWA  Yoshikazu MIYANAGA  

     
    PAPER-Digital Signal Processing

      Page(s):
    1984-1992

    Genetic algorithm (GA) is now an important tool in the field of wireless communications. For multiple-input/multiple-output (MIMO) wireless communications system employing spatial multiplexing transmission, we evaluate the effects of GA parameters value on channel parameters in fading channels. We assume transmit-correlated Rayleigh and Rician fading with realistic Laplacian power azimuth spectrum. Azimuth spread (AS) and Rician K-factor are selected according to the measurement-based WINNER II channel model for several scenarios. Herein we have shown the effects of GA parameters and channel parameters in different WINNER II scenarios (i.e., AS and K values) and rank of the deterministic components. We employ meta GA that suitably selects the population (P), generation (G) and mutation probability (pm) for the inner GA. Then we show the cumulative distribution function (CDF) obtain experimentally for the condition number C of the channel matrix H. It is found that, GA parameters depend on the channel parameters, i.e., GA parameters are the functions of the channel parameters. It is also found that for the poorer channel conditions smaller GA parameter values are required for MIMO detection. This approach will help to achieve maximum performance in practical condition for the lower numerical complexity.

  • Dynamic Quantization of Nonaffine Nonlinear Systems

    Shun-ichi AZUMA  Toshiharu SUGIE  

     
    PAPER-Systems and Control

      Page(s):
    1993-1998

    For quantized control, one of the powerful approaches is to use a dynamic quantizer, which has internal memories for signal quantization, with a conventional controller in the feedback control loop. The design of dynamic quantizers has become a major topic, and a number of results have been derived so far. In this paper, we extend the authors' recent result on dynamic quantizers, and applied them to a more general class of nonlinear systems, called the nonaffine nonlinear systems. Based on the performance index representing the degradation caused by the signal quantization, we propose practical dynamic quantizers, which include the authors' former result as a special case. Moreover, we provide theoretical results on the performance and on the stability of the resulting quantized systems.

  • Variable-Rate Linear Broadcasts Realized with a Single-Rate Strict Linear Broadcast

    Jingjing SI  Kai LIU  Bojin ZHUANG  Anni CAI  

     
    PAPER-Communication Theory and Signals

      Page(s):
    1999-2006

    Variable-rate linear network codes are investigated in this paper, which are referred to as linear network codes that can support a demanded range of transmission rates on a common netowrk. A new kind of linear network code, called as strict linear broadcast, is defined. Compared with general linear broadcast, it imposes more rigid constraints on the global encoding kernels, but does not require larger finite field size for construction. Then, an efficient scheme is proposed to construct variable-rate linear broadcasts based on the strict linear broadcast. Instead of construcing a fix-rate linear broadcast for each demanded transmission rate, this scheme implements variable-rate linear broadcasts with a single-rate strict linear broadcast. Every node in the network, including the source node, needs to store only one local encoding kernel. When transmission rate varies, the coding operations performed on every network node remain unchanged. Thus, small storage space and no kernel-swithching operations are required on any network code. Furthermore, by combining the strict linear broadcast with a special source-data packetization strategy, a hierarchical broadcast scheme is proposed. With this scheme, multi-rate service can be provided by a single-rate strict linear broadcast to heterogeneous receivers, even at variable transmission rate. Thus, the variable-rate linear broadcasts constructed in this paper are also applicable to the network with heterogeneous receivers.

  • A Travel-Efficient Driving Assistance Scheme in VANETs by Providing Recommended Speed

    Chunxiao LI  Weijia CHEN  Dawei HE  Xuelong HU  Shigeru SHIMAMOTO  

     
    PAPER-Intelligent Transport System

      Page(s):
    2007-2015

    Vehicles' speed is one of the key factors in vehicle travel efficiency, as speed is related to vehicle travel time, travel safety, fuel consumption, and exhaust gas emissions (e.g., CO2 emissions). Therefore, to improve the travel efficiency, a recommended speed calculation scheme is proposed to assist driving in Vehicle Ad hoc networks (VANETs) circumstances. In the proposed scheme, vehicles' current speed and space headway are obtained by Vehicle-to-Roadside unit (V2R) communication and Vehicle-to-Vehicle (V2V) communication. Based on the vehicles' current speed and adjacent vehicles' space headway, a recommended speed is calculated by on-board units installed in the vehicles, and then this recommended speed is provided to drivers. The drivers can change their speed to the recommended speed. At the recommended speed, vehicle travel efficiency can be improved: vehicles can arrive at destinations in a shorter travel time with fewer stop times, lower fuel consumption, and less CO2 emission. In particular, when approaching intersections, vehicles can pass through the intersections with less red light waiting time and a higher non-stop passing rate.

  • A New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomials

    Ferruh ÖZBUDAK  Sedat AKLEYLEK  Murat CENK  

     
    PAPER-General Fundamentals and Boundaries

      Page(s):
    2016-2024

    In this paper, Hermite polynomial representation is proposed as an alternative way to represent finite fields of characteristic two. We show that multiplication in Hermite polynomial representation can be achieved with subquadratic space complexity. This representation enables us to find binomial or trinomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. We then show that the product of two elements in Hermite polynomial representation can be performed as Toeplitz matrix-vector product. This representation is very interesting for NIST recommended binary field GF(2571) since there is no ONB for the corresponding extension. This representation can be used to obtain more efficient finite field arithmetic.

  • Improved Speech-Presence Uncertainty Estimation Based on Spectral Gradient for Global Soft Decision-Based Speech Enhancement

    Jong-Woong KIM  Joon-Hyuk CHANG  Sang Won NAM  Dong Kook KIM  Jong Won SHIN  

     
    LETTER-Speech and Hearing

      Page(s):
    2025-2028

    In this paper, we propose a speech-presence uncertainty estimation to improve the global soft decision-based speech enhancement technique by using the spectral gradient scheme. The conventional soft decision-based speech enhancement technique uses a fixed ratio (Q) of the a priori speech-presence and speech-absence probabilities to derive the speech-absence probability (SAP). However, we attempt to adaptively change Q according to the spectral gradient between the current and past frames as well as the status of the voice activity in the previous two frames. As a result, the distinct values of Q to each frequency in each frame are assigned in order to improve the performance of the SAP by tracking the robust a priori information of the speech-presence in time.

  • An Iterative Technique for Optimally Designing Extrapolated Impulse Response Filter in the Mini-Max Sense

    Hao WANG  Li ZHAO  Wenjiang PEI  Jiakuo ZUO  Qingyun WANG  Minghai XIN  

     
    LETTER-Systems and Control

      Page(s):
    2029-2033

    The optimal design of an extrapolated impulse response (EIR) filter (in the mini-max sense) is a non-linear programming problem. In this paper, the optimal design of the EIR filter by the semi-infinite programming (SIP) is investigated and an iterative technique for optimally designing the EIR filter is proposed. The simulation experiment validates the effectiveness of the SIP technique and the proposed iterative technique in the optimal design of the EIR filter.

  • On Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback via Matrix Inequality Approach

    Min-Sung KOO  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Page(s):
    2034-2038

    In this letter, we consider the global exponential stabilization problem by output feedback for a class of nonlinear systems. Along with a newly proposed matrix inequality condition, the proposed control method has improved flexibility in dealing with nonlinearity, over the existing methods. Analysis and examples are given to illustrate the improved features of our control method.

  • Quantum Steganography with High Efficiency with Noisy Depolarizing Channels

    Xin LIAO  Qiaoyan WEN  Tingting SONG  Jie ZHANG  

     
    LETTER-Cryptography and Information Security

      Page(s):
    2039-2044

    Quantum steganography is to send secret quantum information through a quantum channel, such that an unauthorized user will not be aware of the existence of secret data. The depolarizing channel can hide quantum information by disguising it as channel errors of a quantum error-correcting code. We improve the efficiency of quantum steganography with noisy depolarizing channels, by modifying the twirling procedure and adding quantum teleportation. The proposed scheme not only meets the requirements of quantum steganography but also has higher efficiency.

  • Autocorrelation Values of Generalized Cyclotomic Sequences of Order Six

    Chun-e ZHAO  Wenping MA  Tongjiang YAN  Yuhua SUN  

     
    LETTER-Cryptography and Information Security

      Page(s):
    2045-2048

    Binary sequences with low autocorrelation have important applications in communication systems and cryptography. In this paper, the autocorrelation values of binary Whiteman generalized cyclotomic sequences of order six and period pq are discussed. Our result shows that the autocorrelation of these sequences is four-valued and that the corresponding values are in {-1,3,-5,pq} if the parameters are chosen carefully.

  • Some Notes on the Generalized Cyclotomic Binary Sequences of Length 2pm and pm

    Tongjiang YAN  Xiaoping LI  

     
    LETTER-Cryptography and Information Security

      Page(s):
    2049-2051

    This paper contributes to k-error linear complexity of some generalized cyclotomic binary sequences of length 2pm and pm constructed in recent years. By defining related reference sequences, we find that these sequences possess very low k-error linear complexity for some certain values of the parameter k even though they have high linear complexity. Moreover, we point out that (p-1)-tuple distributions of all these sequences are not span. Thus they should be selected carefully for use in stream cipher systems.

  • Outage Performance Analysis of a Multiuser Two-Way Relaying Network with Feedback Delay

    Jie YANG  Xiaofei ZHANG  Kai YANG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    2052-2056

    The outage performance of a multiuser two-way amplify-and-forward (AF) relaying network, where N-th best selection scheme with the consideration to the feedback delay, is investigated. Specifically, the new closed-form expressions for cumulative distribution function (CDF) and outage probability (OP) are presented over time varying Rayleigh-fading channels. Furthermore, simple approximate OP is derived assessing the high signal-to-noise-ratio (SNR), which identifies the diversity behavior. Numerical results show excellent agreement with theoretical results.

  • Blind Carrier Frequency Offset Estimation Based on Polynomial Rooting for Interleaved Uplink OFDMA

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Communication Theory and Signals

      Page(s):
    2057-2060

    This letter deals with blind carrier frequency offset estimation by exploiting the minimum variance distortionless response (MVDR) criterion for interleaved uplink orthogonal frequency division multiple access (OFDMA). It has been shown that the complexity and estimation accuracy of MVDR strictly depend on the grid size used during the search. For the purpose of efficient estimation, we present an improved polynomial rooting estimator that is robust in low signal-to-noise ratio scenario. Simulation results are provided for illustrating the effectiveness of the proposed estimator.

  • Channel Scaling-Based Transmit Antenna Selection for 2-Dimensional Rake Combining Spatial Multiplexing UWB MIMO Systems

    Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Page(s):
    2061-2065

    In this letter, a fast transmit antenna selection algorithm is proposed for the spatial-temporal combining-based spatial multiplexing ultra-wideband systems on a log-normal multipath fading channel. The presented suboptimum algorithm selects the transmit antennas associated with the largest signal to noise ratio value computed by one QR decomposition operation of the full channel matrix spatially and temporally combined. It performs the iterative channel scaling operation about the channel matrix and singular value decomposition about the channel scaled matrix. It is shown that the proposed antenna selection algorithm leads to a substantial improvement in the error performance while keeping low-complexity, and obtains almost the same error performance as the exhaustive search-based optimal antenna selection algorithm.

  • Multi-Frame Image Denoising Based on Minimum Noise Variance Convex Combination with Difference-Based Noise Variance Estimation

    Akira TANAKA  Katsuya KOHNO  

     
    LETTER-Image

      Page(s):
    2066-2070

    In this paper, we propose a novel multi-frame image denoising technique, which achieves the minimum variance of noise. Zero-mean and unknown variance white noise with an arbitrary distribution is considered in this paper. The proposed method consists of two parts. The first one is the estimation of the variance of noise for each image by considering the differences of all pairs of images. The second one is an actual denoising process in which the convex combination of all images with weight coefficients determined by the estimated variances is constructed. We also give an efficient algorithm by which we can obtain the same result by successive convex combinations. The efficacy of the proposed method is confirmed by computer simulations.