The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

9501-9520hit(42807hit)

  • Improving Small-Delay Fault Coverage of On-Chip Delay Measurement by Segmented Scan and Test Point Insertion

    Wenpo ZHANG  Kazuteru NAMBA  Hideo ITO  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:10
      Page(s):
    2719-2729

    With IC design entering the nanometer scale integration, the reliability of VLSI has declined due to small-delay defects, which are hard to detect by traditional delay fault testing. To detect small-delay defects, on-chip delay measurement, which measures the delay time of paths in the circuit under test (CUT), was proposed. However, our pre-simulation results show that when using on-chip delay measurement method to detect small-delay defects, test generation under the single-path sensitization is required. This constraint makes the fault coverage very low. To improve fault coverage, this paper introduces techniques which use segmented scan and test point insertion (TPI). Evaluation results indicate that we can get an acceptable fault coverage, by combining these techniques for launch off shift (LOS) testing under the single-path sensitization condition. Specifically, fault coverage is improved 27.02∼47.74% with 6.33∼12.35% of hardware overhead.

  • Study on Moisture Effects on Polarimetric Radar Backscatter from Forested Terrain

    Takuma WATANABE  Hiroyoshi YAMADA  Motofumi ARII  Ryoichi SATO  Sang-Eun PARK  Yoshio YAMAGUCHI  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2074-2082

    Soil moisture retrieval from polarimetric synthetic aperture radar (SAR) imagery over forested terrain is quite a challenging problem, because the radar backscatter is affected by not only the moisture content, but also by large vegetation structures such as the trunks and branches. Although a large number of algorithms which exploit radar backscatter to infer soil moisture have been developed, most of them are limited to the case of bare soil or little vegetation cover that an incident wave can easily reach the soil surface without serious disturbance. However, natural land surfaces are rarely free from vegetation, and the disturbance in radar backscatter must be properly compensated to achieve accurate soil moisture measurement in a diversity of terrain surfaces. In this paper, a simple polarimetric parameter, co-polarized backscattering ratio, is shown to be a criterion to infer moisture content of forested terrain, from both a theoretical forest scattering simulation and an appropriate experimental validation under well-controlled condition. Though modeling of forested terrain requires a number of scattering mechanisms to be taken into account, it is essential to isolate them one by one to better understand how soil moisture affects a specific and principal scattering component. For this purpose, we consider a simplified microwave scattering model for forested terrain, which consists of a cloud of dielectric cylinders as a representative of trunks, vertically stood on a flat dielectric soil surface. This simplified model can be considered a simple boreal forest model, and it is revealed that the co-polarization ratio in the ground-trunk double-bounce backscattering can be an useful index to monitor the relative variation in the moisture content of the boreal forest.

  • A Modified FTA Approach to Achieve Runtime Safety Analysis of Critical Systems

    Guoqi LI  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E97-A No:10
      Page(s):
    2083-2085

    Runtime analysis is to enhance the safety of critical systems by monitoring the change of corresponding external environments. In this paper, a modified FTA approach, making full utilization of the existing safety analysis result, is put forward to achieve runtime safety analysis. The procedures of the approach are given in detail. This approach could be widely used in safety engineering of critical systems.

  • An Implantable Sacral Nerve Root Recording and Stimulation System for Micturition Function Restoration

    Yuan WANG  Xu ZHANG  Ming LIU  Weihua PEI  Kaifeng WANG  Hongda CHEN  

     
    PAPER-Biological Engineering

      Vol:
    E97-D No:10
      Page(s):
    2790-2801

    This paper provides a prototype neural prosthesis system dedicated to restoring continence and micturition function for patients with lower urinary tract diseases, such as detrusor hyperreflexia and detrusor-sphincter dyssynergia. This system consists of an ultra low-noise electroneurogram (ENG) signal recording module, a bi-phasic electrical stimulator module and a control unit for closed-loop bladder monitoring and controlling. In order to record extremely weak ENG signal from extradural sacral nerve roots, the system provides a programmable gain from 80 dB to 117 dB. By combining of advantages of commercial-off-the-shelf (COTS) electronics and custom designed IC, the recording front-end acquires a fairly low input-referred noise (IRN) of 0.69 μVrms under 300 Hz to 3 kHz and high area-efficiency. An on-chip multi-steps single slope analog-to-digital converter (ADC) is used to digitize the ENG signals at sampling rate of 10 kSPS and achieves an effective number of bits (ENOB) of 12.5. A bi-phasic current stimulus generator with wide voltage supply range (±0.9 V to ±12.5 V) and variable output current amplitude (0-500 μA) is introduced to overcome patient-depended impedance between electrode and tissue electrolyte. The total power consumption of the entire system is 5.61 mW. Recording and stimulation function of this system is switched by control unit with time division multiplexing strategy. The functionality of this proposed prototype system has been successfully verified through in-vivo experiments from dogs extradural sacral nerve roots.

  • A Dynamic Hyper-Heuristic Based on Scatter Search for the Aircraft Landing Scheduling Problem

    Wen SHI  Xueyan SONG  Jizhou SUN  

     
    LETTER-Intelligent Transport System

      Vol:
    E97-A No:10
      Page(s):
    2090-2094

    Aircraft Landing Scheduling (ALS) attempts to determine the landing time for each aircraft. The objective of ALS is to minimise the deviations of the landing time of each aircraft from its target landing time. In this paper, we propose a dynamic hyper-heuristic algorithm for the ALS problem. In our approach, the Scatter Search algorithm is chosen as the high level heuristic to build a chain of intensification and diversification priority rules, which are applied to generate the landing sequence by different priority rules, which are low level heuristics in the hyper-heuristic framework. The landing time for each aircraft can be calculated efficiently based on the landing sequence. Simulation studies demonstrate that the proposed algorithm can obtain high quality solutions for ALS.

  • FOREWORD Open Access

    Laurence T. YANG  

     
    FOREWORD

      Vol:
    E97-D No:10
      Page(s):
    2567-2567
  • Coherent Combining-Based Initial Ranging Scheme for MIMO-OFDMA Systems

    Yujie XIA  Guangliang REN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2203-2211

    A coherent combining-based initial ranging scheme is proposed for multiple-input multiple-output and orthogonal frequency division multiple access systems. The proposed algorithm utilizes the correlation properties of the ranging codes to resolve the multipath components, coherently combines the initial ranging signal of resolved path on each receiving antenna to maximize the output signal-to-interference-and-noise ratio, and then collects the power of the multipath signals to detect the states of the ranging codes. Simulation results show that the proposed scheme has much better performance than the available noncoherent combining method, and can accommodate more active ranging users simultaneously in each cell.

  • Shadow Theory of Diffraction Grating: Reciprocity, Symmetry and Average Filter

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E97-C No:10
      Page(s):
    1036-1040

    In the theory of periodic gratings, there is no method to make up a numerical solution that satisfies the reciprocity so far. On the basis of the shadow theory, however, this paper proposes a new method to obtain a numerical solution that satisfies the reciprocity. The shadow thoery states that, by the reciprocity, the $m$th order scattering factor is an even function with respect to a symmetrical axis depending on the order $m$ of diffraction. However, a scattering factor obtained numerically becomes an even function only approximately, but not accurately. It can be decomposed to even and odd components, where an odd component represents an error with respect to the reciprocity and can be removed by the average filter. Using even components, a numerical solution that satisfies the reciprocity is obtained. Numerical examples are given for the diffraction of a transverse magnetic (TM) plane wave by a very rough periodic surface with perfect conductivity. It is then found that, by use of the average filter, the energy error is much reduced in some case.

  • A Simplified Broadband Output Matching Technique for CMOS stacked Power Amplifiers

    Jaeyong KO  Kihyun KIM  Jaehoon SONG  Sangwook NAM  

     
    BRIEF PAPER

      Vol:
    E97-C No:10
      Page(s):
    938-940

    This paper describes the design method of a broadband CMOS stacked power amplifier using harmonic control over wide bandwidths in a 0.11,$mu $m standard CMOS process. The high-efficiency can be obtained over wide bandwidths by designing a load impedance circuit as purely reactive as possible to the harmonics with broadband fundamental matching, which is based on continuous Class-F mode of operation. Furthermore, the stacked topology overcomes the low breakdown voltage limit of CMOS transistor and increases output impedance. With a 5-V supply and a fixed matching circuitry, the suggested power amplifier (PA) achieves a saturated output power of over 26.7,dBm and a drain efficiency of over 38% from 1.6,GHz to 2.2,GHz. In W-CDMA modulation signal measurements, the PA generates linear power and power added efficiency of over 23.5,dBm and 33% (@ACLR $=-33$,dBc).

  • Experimental Investigation on RF Characteristics of Cryogenically-Cooled 3W-Class Receiver Amplifier Employing GaN HEMT with Blue Light LED for Mobile Base Stations

    Yasunori SUZUKI  Shoichi NARAHASHI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    930-937

    This paper presents an experimental investigation on the RF characteristics of a 3W-class cryogenically-cooled receiver amplifier employing a gallium-nitride high electron mobility transistor (GaN HEMT) with a blue light for mobile base stations. In general, a cryogenically-cooled receiver amplifier using a GaN HEMT exhibits unstable DC characteristics similar to those found in the current collapse phenomenon because the GaN HEMT loses thermal energy at cryogenic temperatures. The fabricated cryogenically-cooled receiver amplifier achieves stable DC characteristics by injecting blue light into the GaN HEMT instead of thermal energy. Experimental results show that the amplifier achieves fine stable DC characteristics for deviation in the drain-source current from 42% to 5% and RF characteristics for a maximum power added efficiency from 58% to 68% without and with the blue light at 60,K. The fabricated amplifier is effective in reducing the power consumption at cryogenic temperatures. To the best of our knowledge, this paper is the first report regarding RF characteristics of a cryogenically-cooled receiver amplifier using a blue light for mobile base stations.

  • Versatile Radio Channel Sounder for Double Directional and Multi-link MIMO Channel Measurements at 11 GHz

    Yohei KONISHI  Yuyuan CHANG  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    994-1004

    This paper presents a $24 imes24$ MIMO channel sounder that has been developed based on a scalable fully parallel MIMO architecture. It can be flexibly configured with 3 sub-transmitters and 3 sub-receivers, each of which consists of 8 RF ports. This flexibility allows the measurement for both purposes of double directional and multi-link MIMO channel measurements. Implementation issues related to the multi-link operation on the fully parallel architecture were successfully solved by appropriate system design and applying several calibration techniques. The performance of the developed system was validated by extensive test experiments. Finally, a multi-link channel measurement example in an indoor environment was presented demonstrating the capability of the proposed system.

  • A Compact Three-Mode H-Shaped Resonator Bandpass Filter Having High Passband Selectivity with Four Transmission Zeros and Wide Stopband Characteristic

    Masataka OHIRA  Zhewang MA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    957-964

    This paper proposes a compact three-mode H-shaped resonator bandpass filter fed by antiparallel coupled input/output lines. To investigate the resonant behavior of the H-shaped resonator, even/odd-mode resonance conditions of the resonator are first derived analytically. The multimode resonances of the H-shaped resonator filter are modeled by a multipath circuit formed with resonance paths. Moreover, a direct source/load coupling path is connected in parallel, of which the value shows a frequency dependency because of the antiparallel coupled feeding lines, thereby generating four transmission zeros (TZs) greater than the number of a theoretical limitation. The H-shaped resonator bandpass filter is synthesized, developed, and tested, showing a third-order passband response with four TZs located near the passband, and a wide stopband property.

  • A PCB Integrated Multi-layered Strip Line Tandem Coupler Using Compensating Ground Through-Hole Elements

    Takeshi YUASA  Yukihiro TAHARA  Tetsu OWADA  Naofumi YONEDA  Yoshihiko KONISHI  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E97-C No:10
      Page(s):
    1014-1020

    This paper presents a printed circuit board (PCB) integrated multi-layered strip line tandem coupler, which used simple compensating ground through-hole (GTH) elements. The GTH elements on one end of the coupled line can generate additional capacitance between the signal line and the ground, which effectively compensates for the parasitic capacitance around the crossed signal lines on the opposite end of the coupled line. It has been experimentally demonstrated that the proposed coupler fabricated for the X-band is effective to improve both the reflection and the isolation characteristics.

  • DOA Estimation for Multi-Band Signal Sources Using Compressed Sensing Techniques with Khatri-Rao Processing

    Tsubasa TERADA  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  Hiroyoshi YAMADA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2110-2117

    Much attention has recently been paid to direction of arrival (DOA) estimation using compressed sensing (CS) techniques, which are sparse signal reconstruction methods. In our previous study, we developed a method for estimating the DOAs of multi-band signals that uses CS processing and that is based on the assumption that incident signals have the same complex amplitudes in all the bands. That method has a higher probability of correct estimation than a single-band DOA estimation method using CS. In this paper, we propose novel DOA estimation methods for multi-band signals with frequency characteristics using the Khatri-Rao product. First, we formulate a method that can estimate DOAs of multi-band signals whose phases alone have frequency dependence. Second, we extend the scheme in such a way that we can estimate DOAs of multi-band signals whose amplitudes and phases both depend on frequency. Finally, we evaluate the performance of the proposed methods through computer simulations and reveal the improvement in estimation performance.

  • Head-Tail Expressions for Interval Functions

    Infall SYAFALNI  Tsutomu SASAO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:10
      Page(s):
    2043-2054

    This paper shows a method to represent interval functions by using head-tail expressions. The head-tail expressions represent greater-than GT(X:A) functions, less-than LT(X:B) functions, and interval functions IN0(X:A,B) more efficiently than sum-of-products expressions. Let n be the number of bits to represent the largest value in the interval (A,B). This paper proves that a head-tail expression (HT) represents an interval function with at most n words in a ternary content addressable memory (TCAM) realization. It also shows the average numbers of factors to represent interval functions by HTs for up to n=16, which were obtained by a computer simulation. It also conjectures that, for sufficiently large n, the average number of factors to represent n-variable interval functions by HTs is at most 2/3n-5/9. Experimental results also show that, for n≥10, to represent interval functions, HTs require at least 20% fewer factors than MSOPs, on the average.

  • Proposal of an Overreach Measurement Method for Digital Terrestrial TV Service Using FM Broadcasting Waves

    Masahiro NISHI  Koichi SHIN  Teruaki YOSHIDA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:10
      Page(s):
    2167-2174

    In the digital terrestrial TV broadcasting system, it is important to evaluate both quantitative levels and sources of overreach interference, because it can degrade the TV service quality. This paper newly proposes an overreach measurement method that simultaneously monitors RSSI (Received Signal Strength Indicator) and CNR (Carrier to Noise power Ratio) of the TV waves and RSSI of FM waves. The results of measurements conducted in Hiroshima prefecture show that our proposed method can evaluate the level of overreach interference in the TV waves and also identify the source of the interference. Total 43 overreach interference events were found in the proposed method from one-year measurement in 2012. Based on M profile data, this paper also shows that the main factor of the overreach interference in this measurement is duct propagation due to meteorological condition.

  • Quality-of-Experience (QoE) in Emerging Mobile Social Networks

    Mianxiong DONG  Takashi KIMATA  Komei SUGIURA  Koji ZETTSU  

     
    PAPER

      Vol:
    E97-D No:10
      Page(s):
    2606-2612

    Mobile social networks (MSN) provides diverse services to meet the needs of mobile users, i.e., discovering new friends, and sharing their pictures, videos and other information among their common interest friends. On the other hand, Quality-of-Experience (QoE) is a new concept related to but differs from Quality-of-Service (QoS) perception. QoE is a subjective measure of a customer's experiences with a service focuses on the entire service experience, and is a more holistic evaluation. So far, QoS issues have been focused and mainly addressed in the literature of MSNs. To the best of our knowledge, this paper is the first article to address QoE issues in emerging MSNs. In this paper, we first present a comprehensive investigation on recent advances in MSNs as well as QoE issues addressed in various types of applications and networks. From the lessons learned from the literature, then we propose a future research direction of QoE in MSNs.

  • Radiation Properties of a Linearly Polarized Radial Line Microstrip Antenna Array with U-Slots

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2059-2065

    This paper presents the design and radiation properties of a linearly polarized radial line microstrip antenna array (RL-MSAA) with U-slot circular microstrip antennas. A circular microstrip antenna (C-MSA) with U-shaped slot is used as a radiation element of the RL-MSAA. Radiation phase of the U-slot C-MSA is controlled by tuning the radius of the C-MSA and dimensions of the U-slot on the C-MSA; therefore, the desired phase distribution of the RL-MSAA can be realized. In this paper, a linearly polarized RL-MSAA with three concentric rows of C-MSAs at a spacing of 0.65 wavelengths is designed for 12GHz operation. In order to realize uniform phase distribution, the U-slot C-MSAs are arranged for inner two rows and normal C-MSAs are arranged for the termination row. Validity of the linearly polarized RL-MSAA with the U-slot C-MSAs for radiation phase control is demonstrated by simulation and measurement.

  • The Numerical Analysis of an Antenna near a Dielectric Object Using the Higher-Order Characteristic Basis Function Method Combined with a Volume Integral Equation

    Keisuke KONNO  Qiang CHEN  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2066-2073

    The higher-order characteristic basis function method (HO-CBFM) is clearly formulated. HO-CBFM provides results accurately even if a block division is arbitrary. The HO-CBFM combined with a volume integral equation (VIE) is used in the analysis of various antennas in the vicinity of a dielectric object. The results of the numerical analysis show that the HO-CBFM can reduce the CPU time while still achieving the desired accuracy.

  • A Spatial Fading Emulator for Evaluation of MIMO Antennas in a Cluster Environment

    Tsutomu SAKATA  Atsushi YAMAMOTO  Koichi OGAWA  Hiroshi IWAI  Jun-ichi TAKADA  Kei SAKAGUCHI  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2127-2135

    This paper presents a spatial fading emulator for evaluating handset MIMO antennas in a cluster environment. The proposed emulator is based on Clarke's model and has the ability to control RF signals directly in spatial domain to generate an accurate radio propagation channel model, which includes both uniform and non-uniform angular power spectra (APS) in the horizontal plane. Characteristics of a propagation channel such as fading correlations, eigenvalues and MIMO channel capacities of handset antennas located in the vicinity of the emulator's ring can be evaluated. The measured results show that the fading emulator with 31 antenna probes is sufficient to evaluate fading correlation and MIMO channel capacity of handset antenna in the case of a narrow APS with the standard deviation of more than 20 degrees.

9501-9520hit(42807hit)