The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IN(26286hit)

321-340hit(26286hit)

  • Backhaul Prioritized Point-to-Multi-Point Wireless Transmission Using Orbital Angular Momentum Multiplexing

    Tomoya KAGEYAMA  Jun MASHINO  Doohwan LEE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/21
      Vol:
    E107-B No:1
      Page(s):
    232-243

    Orbital angular momentum (OAM) multiplexing technology is being investigated for high-capacity point-to-point (PtP) wireless transmission toward beyond 5G systems. OAM multiplexing is a spatial multiplexing technique that utilizes the twisting of electromagnetic waves. Its advantage is that it reduces the computational complexity of the signal processing on spatial multiplexing. Meanwhile point-to-multi point (PtMP) wireless transmission, such as integrated access and backhaul (IAB) will be expected to simultaneously accommodates a high-capacity prioritized backhaul-link and access-links. In this paper, we study the extension of OAM multiplexing transmission from PtP to PtMP to meet the above requirements. We propose a backhaul prioritized resource control algorithm that maximizes the received signal-to-interference and noise ratio (SINR) of the access-links while maintaining the backhaul-link. The proposed algorithm features adaptive mode selection that takes into account the difference in the received power of each OAM mode depending on the user equipment position and the guaranteed power allocation of the backhaul capacity. We then evaluate the performance of the proposed method through computer simulation. The results show that throughput of the access-links improved compared with the conventional multi-beam multi-user multi-input multi-output (MIMO) techniques while maintaining the throughput of the backhaul-link above the required value with minimal feedback information.

  • Device-to-Device Communications Employing Fog Nodes Using Parallel and Serial Interference Cancelers

    Binu SHRESTHA  Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    223-231

    Device-to-device (D2D) communication allows user terminals to directly communicate with each other without the need for any base stations (BSs). Since the D2D communication underlaying a cellular system shares frequency channels with BSs, co-channel interference may occur. Successive interference cancellation (SIC), which is also called the serial interference canceler, detects and subtracts user signals from received signals in descending order of received power, can cope with the above interference and has already been applied to fog nodes that manage communications among machine-to-machine (M2M) devices besides direct communications with BSs. When differences among received power levels of user signals are negligible, however, SIC cannot work well and thus causes degradation in bit error rate (BER) performance. To solve such a problem, this paper proposes to apply parallel interference cancellation (PIC), which can simultaneously detect both desired and interfering signals under the maximum likelihood criterion and can maintain good BER performance even when power level differences among users are small. When channel coding is employed, however, SIC can be superior to PIC in terms of BER under some channel conditions. Considering the superiority, this paper also proposes to select the proper cancellation scheme and modulation and coding scheme (MCS) that can maximize the throughput of D2D under a constraint of BER, in which the canceler selection is referred to as adaptive interference cancellation. Computer simulations show that PIC outperforms SIC under almost all channel conditions and thus the adaptive selection from PIC and SIC can achieve a marginal gain over PIC, while PIC can achieve 10% higher average system throughput than that of SIC. As for transmission delay time, it is demonstrated that the adaptive selection and PIC can shorten the delay time more than any other schemes, although the fog node causes the delay time of 1ms at least.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Investigation of a Non-Contact Bedsore Detection System

    Tomoki CHIBA  Yusuke ASANO  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    206-213

    The proportion of persons over 65 years old is projected to increase worldwide between 2022 and 2050. The increasing burden on medical staff and the shortage of human resources are growing problems. Bedsores are injuries caused by prolonged pressure on the skin and stagnation of blood flow. The more the damage caused by bedsores progresses, the longer the treatment period becomes. Moreover, patients require surgery in some serious cases. Therefore, early detection is essential. In our research, we are developing a non-contact bedsore detection system using electromagnetic waves at 10.5GHz. In this paper, we extracted appropriate information from a scalogram and utilized it to detect the sizes of bedsores. In addition, experiments using a phantom were conducted to confirm the basic operation of the bedsore detection system. As a result, using the approximate curves and lines obtained from prior analysis data, it was possible to estimate the volume of each defected area, as well as combinations of the depth of the defected area and the length of the defected area. Moreover, the experiments showed that it was possible to detect bedsore presence and estimate their sizes, although the detection results had slight variations.

  • Improvement of Channel Capacity of MIMO Communication Using Yagi-Uda Planar Antennas with a Propagation Path through a PVC Pipe Wall

    Akihiko HIRATA  Keisuke AKIYAMA  Shunsuke KABE  Hiroshi MURATA  Masato MIZUKAMI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/10/13
      Vol:
    E107-B No:1
      Page(s):
    197-205

    This study investigates the improvement of the channel capacity of 5-GHz-band multiple-input multiple-output (MIMO) communication using microwave-guided modes propagating along a polyvinyl chloride (PVC) pipe wall for a buried pipe inspection robot. We design a planar Yagi-Uda antenna to reduce transmission losses in communication with PVC pipe walls as propagation paths. Coupling efficiency between the antenna and a PVC pipe is improved by attaching a PVC adapter with the same curvature as the PVC pipe's inner wall to the Yagi-Uda antenna to eliminate any gap between the antenna and the inner wall of the PVC pipe. The use of a planar Yagi-Uda antenna with a PVC adaptor decreases the transmission loss of a 5-GHz-band microwave signal propagating along a 1-m-lomg straight PVC pipe wall by 7dB compared to a dipole antenna. The channel capacity of a 2×2 MIMO system using planar Yagi-Uda antennas is more than twice that of the system using dipole antennas.

  • MSLT: A Scalable Solution for Blockchain Network Transport Layer Based on Multi-Scale Node Management Open Access

    Longle CHENG  Xiaofeng LI  Haibo TAN  He ZHAO  Bin YU  

     
    PAPER-Network

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    185-196

    Blockchain systems rely on peer-to-peer (P2P) overlay networks to propagate transactions and blocks. The node management of P2P networks affects the overall performance and reliability of the system. The traditional structure is based on random connectivity, which is known to be an inefficient operation. Therefore, we propose MSLT, a multiscale blockchain P2P network node management method to improve transaction performance. This approach involves configuring the network to operate at multiple scales, where blockchain nodes are grouped into different ranges at each scale. To minimize redundancy and manage traffic efficiently, neighboring nodes are selected from each range based on a predetermined set of rules. Additionally, a node updating method is implemented to improve the reliability of the network. Compared with existing transmission models in efficiency, utilization, and maximum transaction throughput, the MSLT node management model improves the data transmission performance.

  • Resource Allocation for Mobile Edge Computing System Considering User Mobility with Deep Reinforcement Learning

    Kairi TOKUDA  Takehiro SATO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    173-184

    Mobile edge computing (MEC) is a key technology for providing services that require low latency by migrating cloud functions to the network edge. The potential low quality of the wireless channel should be noted when mobile users with limited computing resources offload tasks to an MEC server. To improve the transmission reliability, it is necessary to perform resource allocation in an MEC server, taking into account the current channel quality and the resource contention. There are several works that take a deep reinforcement learning (DRL) approach to address such resource allocation. However, these approaches consider a fixed number of users offloading their tasks, and do not assume a situation where the number of users varies due to user mobility. This paper proposes Deep reinforcement learning model for MEC Resource Allocation with Dummy (DMRA-D), an online learning model that addresses the resource allocation in an MEC server under the situation where the number of users varies. By adopting dummy state/action, DMRA-D keeps the state/action representation. Therefore, DMRA-D can continue to learn one model regardless of variation in the number of users during the operation. Numerical results show that DMRA-D improves the success rate of task submission while continuing learning under the situation where the number of users varies.

  • Content Search Method Utilizing the Metadata Matching Characteristics of Both Spatio-Temporal Content and User Request in the IoT Era

    Shota AKIYOSHI  Yuzo TAENAKA  Kazuya TSUKAMOTO  Myung LEE  

     
    PAPER-Network System

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    163-172

    Cross-domain data fusion is becoming a key driver in the growth of numerous and diverse applications in the Internet of Things (IoT) era. We have proposed the concept of a new information platform, Geo-Centric Information Platform (GCIP), that enables IoT data fusion based on geolocation, i.e., produces spatio-temporal content (STC), and then provides the STC to users. In this environment, users cannot know in advance “when,” “where,” or “what type” of STC is being generated because the type and timing of STC generation vary dynamically with the diversity of IoT data generated in each geographical area. This makes it difficult to directly search for a specific STC requested by the user using the content identifier (domain name of URI or content name). To solve this problem, a new content discovery method that does not directly specify content identifiers is needed while taking into account (1) spatial and (2) temporal constraints. In our previous study, we proposed a content discovery method that considers only spatial constraints and did not consider temporal constraints. This paper proposes a new content discovery method that matches user requests with content metadata (topic) characteristics while taking into account spatial and temporal constraints. Simulation results show that the proposed method successfully discovers appropriate STC in response to a user request.

  • A Survey of Information-Centric Networking: The Quest for Innovation Open Access

    Hitoshi ASAEDA  Kazuhisa MATSUZONO  Yusaku HAYAMIZU  Htet Htet HLAING  Atsushi OOKA  

     
    INVITED PAPER-Network

      Pubricized:
    2023/08/22
      Vol:
    E107-B No:1
      Page(s):
    139-153

    Information-Centric Networking (ICN) is an innovative technology that provides low-loss, low-latency, high-throughput, and high-reliability communications for diversified and advanced services and applications. In this article, we present a technical survey of ICN functionalities such as in-network caching, routing, transport, and security mechanisms, as well as recent research findings. We focus on CCNx, which is a prominent ICN protocol whose message types are defined by the Internet Research Task Force. To facilitate the development of functional code and encourage application deployment, we introduce an open-source software platform called Cefore that facilitates CCNx-based communications. Cefore consists of networking components such as packet forwarding and in-network caching daemons, and it provides APIs and a Python wrapper program that enables users to easily develop CCNx applications for on Cefore. We introduce a Mininet-based Cefore emulator and lightweight Docker containers for running CCNx experiments on Cefore. In addition to exploring ICN features and implementations, we also consider promising research directions for further innovation.

  • Introduction to Compressed Sensing with Python Open Access

    Masaaki NAGAHARA  

     
    INVITED PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/08/15
      Vol:
    E107-B No:1
      Page(s):
    126-138

    Compressed sensing is a rapidly growing research field in signal and image processing, machine learning, statistics, and systems control. In this survey paper, we provide a review of the theoretical foundations of compressed sensing and present state-of-the-art algorithms for solving the corresponding optimization problems. Additionally, we discuss several practical applications of compressed sensing, such as group testing, sparse system identification, and sparse feedback gain design, and demonstrate their effectiveness through Python programs. This survey paper aims to contribute to the advancement of compressed sensing research and its practical applications in various scientific disciplines.

  • Device Type Classification Based on Two-Stage Traffic Behavior Analysis Open Access

    Chikako TAKASAKI  Tomohiro KORIKAWA  Kyota HATTORI  Hidenari OHWADA  

     
    PAPER

      Pubricized:
    2023/10/17
      Vol:
    E107-B No:1
      Page(s):
    117-125

    In the beyond 5G and 6G networks, the number of connected devices and their types will greatly increase including not only user devices such as smartphones but also the Internet of Things (IoT). Moreover, Non-terrestrial networks (NTN) introduce dynamic changes in the types of connected devices as base stations or access points are moving objects. Therefore, continuous network capacity design is required to fulfill the network requirements of each device. However, continuous optimization of network capacity design for each device within a short time span becomes difficult because of the heavy calculation amount. We introduce device types as groups of devices whose traffic characteristics resemble and optimize network capacity per device type for efficient network capacity design. This paper proposes a method to classify device types by analyzing only encrypted traffic behavior without using payload and packets of specific protocols. In the first stage, general device types, such as IoT and non-IoT, are classified by analyzing packet header statistics using machine learning. Then, in the second stage, connected devices classified as IoT in the first stage are classified into IoT device types, by analyzing a time series of traffic behavior using deep learning. We demonstrate that the proposed method classifies device types by analyzing traffic datasets and outperforms the existing IoT-only device classification methods in terms of the number of types and the accuracy. In addition, the proposed model performs comparable as a state-of-the-art model of traffic classification, ResNet 1D model. The proposed method is suitable to grasp device types in terms of traffic characteristics toward efficient network capacity design in networks where massive devices for various services are connected and the connected devices continuously change.

  • Resource-Efficient and Availability-Aware Service Chaining and VNF Placement with VNF Diversity and Redundancy

    Takanori HARA  Masahiro SASABE  Kento SUGIHARA  Shoji KASAHARA  

     
    PAPER

      Pubricized:
    2023/10/10
      Vol:
    E107-B No:1
      Page(s):
    105-116

    To establish a network service in network functions virtualization (NFV) networks, the orchestrator addresses the challenge of service chaining and virtual network function placement (SC-VNFP) by mapping virtual network functions (VNFs) and virtual links onto physical nodes and links. Unlike traditional networks, network operators in NFV networks must contend with both hardware and software failures in order to ensure resilient network services, as NFV networks consist of physical nodes and software-based VNFs. To guarantee network service quality in NFV networks, the existing work has proposed an approach for the SC-VNFP problem that considers VNF diversity and redundancy. VNF diversity splits a single VNF into multiple lightweight replica instances that possess the same functionality as the original VNF, which are then executed in a distributed manner. VNF redundancy, on the other hand, deploys backup instances with standby mode on physical nodes to prepare for potential VNF failures. However, the existing approach does not adequately consider the tradeoff between resource efficiency and service availability in the context of VNF diversity and redundancy. In this paper, we formulate the SC-VNFP problem with VNF diversity and redundancy as a two-step integer linear program (ILP) that adjusts the balance between service availability and resource efficiency. Through numerical experiments, we demonstrate the fundamental characteristics of the proposed ILP, including the tradeoff between resource efficiency and service availability.

  • Virtualizing DVFS for Energy Minimization of Embedded Dual-OS Platform

    Takumi KOMORI  Yutaka MASUDA  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2023/07/12
      Vol:
    E107-A No:1
      Page(s):
    3-15

    Recent embedded systems require both traditional machinery control and information processing, such as network and GUI handling. A dual-OS platform consolidates a real-time OS (RTOS) and general-purpose OS (GPOS) to realize efficient software development on one physical processor. Although the dual-OS platform attracts increasing attention, it often suffers from energy inefficiency in the GPOS for guaranteeing real-time responses of the RTOS. This paper proposes an energy minimization method called DVFS virtualization, which allows running multiple DVFS policies dedicated to the RTOS and GPOS, respectively. The experimental evaluation using a commercial microcontroller showed that the proposed hardware could change the supply voltage within 500 ns and reduce the energy consumption of typical applications by 60 % in the best case compared to conventional dual-OS platforms. Furthermore, evaluation using a commercial microprocessor achieved a 15 % energy reduction of practical open-source software at best.

  • Multi-Agent Surveillance Based on Travel Cost Minimization

    Kyohei MURAKATA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    25-30

    The multi-agent surveillance problem is to find optimal trajectories of multiple agents that patrol a given area as evenly as possible. In this paper, we consider the multi-agent surveillance problem based on travel cost minimization. The surveillance area is given by an undirected graph. The penalty for each agent is introduced to evaluate the surveillance performance. Through a mixed logical dynamical system model, the multi-agent surveillance problem is reduced to a mixed integer linear programming (MILP) problem. In model predictive control, trajectories of agents are generated by solving the MILP problem at each discrete time. Furthermore, a condition that the MILP problem is always feasible is derived based on the Chinese postman problem. Finally, the proposed method is demonstrated by a numerical example.

  • Reinforcement Learning for Multi-Agent Systems with Temporal Logic Specifications

    Keita TERASHIMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    31-37

    In a multi-agent system, it is important to consider a design method of cooperative actions in order to achieve a common goal. In this paper, we propose two novel multi-agent reinforcement learning methods, where the control specification is described by linear temporal logic formulas, which represent a common goal. First, we propose a simple solution method, which is directly extended from the single-agent case. In this method, there are some technical issues caused by the increase in the number of agents. Next, to overcome these technical issues, we propose a new method in which an aggregator is introduced. Finally, these two methods are compared by numerical simulations, with a surveillance problem as an example.

  • Ising-Machine-Based Solver for Constrained Graph Coloring Problems

    Soma KAWAKAMI  Yosuke MUKASA  Siya BAO  Dema BA  Junya ARAI  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-A No:1
      Page(s):
    38-51

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. The graph coloring problem, which is one of the difficult combinatorial optimization problems, is to assign a color to each vertex of a graph such that no two vertices connected by an edge have the same color. Although methods to map the graph coloring problem onto the Ising model or quadratic unconstrained binary optimization (QUBO) model are proposed, none of them considers minimizing the number of colors. In addition, there is no Ising-machine-based method considering additional constraints in order to apply to practical problems. In this paper, we propose a mapping method of the graph coloring problem including minimizing the number of colors and additional constraints to the QUBO model. As well as the constraint terms for the graph coloring problem, we firstly propose an objective function term that can minimize the number of colors so that the number of used spins cannot increase exponentially. Secondly, we propose two additional constraint terms: One is that specific vertices have to be colored with specified colors; The other is that specific colors cannot be used more than the number of times given in advance. We theoretically prove that, if the energy of the proposed QUBO mapping is minimized, all the constraints are satisfied and the objective function is minimized. The result of the experiment using an Ising machine showed that the proposed method reduces the number of used colors by up to 75.1% on average compared to the existing baseline method when additional constraints are not considered. Considering the additional constraints, the proposed method can effectively find feasible solutions satisfying all the constraints.

  • Giving a Quasi-Initial Solution to Ising Machines by Controlling External Magnetic Field Coefficients

    Soma KAWAKAMI  Kentaro OHNO  Dema BA  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    52-62

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. It is known that, when a good initial solution is given to an Ising machine, we can finally obtain a solution closer to the optimal solution. However, several Ising machines cannot directly accept an initial solution due to its computational nature. In this paper, we propose a method to give quasi-initial solutions into Ising machines that cannot directly accept them. The proposed method gives the positive or negative external magnetic field coefficients (magnetic field controlling term) based on the initial solutions and obtains a solution by using an Ising machine. Then, the magnetic field controlling term is re-calculated every time an Ising machine repeats the annealing process, and hence the solution is repeatedly improved on the basis of the previously obtained solution. The proposed method is applied to the capacitated vehicle routing problem with an additional constraint (constrained CVRP) and the max-cut problem. Experimental results show that the total path distance is reduced by 5.78% on average compared to the initial solution in the constrained CVRP and the sum of cut-edge weight is increased by 1.25% on average in the max-cut problem.

  • Hardware-Trojan Detection at Gate-Level Netlists Using a Gradient Boosting Decision Tree Model and Its Extension Using Trojan Probability Propagation

    Ryotaro NEGISHI  Tatsuki KURIHARA  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    63-74

    Technological devices have become deeply embedded in people's lives, and their demand is growing every year. It has been indicated that outsourcing the design and manufacturing of integrated circuits, which are essential for technological devices, may lead to the insertion of malicious circuitry, called hardware Trojans (HTs). This paper proposes an HT detection method at gate-level netlists based on XGBoost, one of the best gradient boosting decision tree models. We first propose the optimal set of HT features among many feature candidates at a netlist level through thorough evaluations. Then, we construct an XGBoost-based HT detection method with its optimized hyperparameters. Evaluation experiments were conducted on the netlists from Trust-HUB benchmarks and showed the average F-measure of 0.842 using the proposed method. Also, we newly propose a Trojan probability propagation method that effectively corrects the HT detection results and apply it to the results obtained by XGBoost-based HT detection. Evaluation experiments showed that the average F-measure is improved to 0.861. This value is 0.194 points higher than that of the existing best method proposed so far.

  • An Anomalous Behavior Detection Method Utilizing IoT Power Waveform Shapes

    Kota HISAFURU  Kazunari TAKASAKI  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    75-86

    In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.

  • Wafer-Level Characteristic Variation Modeling Considering Systematic Discontinuous Effects

    Takuma NAGAO  Tomoki NAKAMURA  Masuo KAJIYAMA  Makoto EIKI  Michiko INOUE  Michihiro SHINTANI  

     
    PAPER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    96-104

    Statistical wafer-level characteristic variation modeling offers an attractive method for reducing the measurement cost in large-scale integrated (LSI) circuit testing while maintaining test quality. In this method, the performance of unmeasured LSI circuits fabricated on a wafer is statistically predicted based on a few measured LSI circuits. Conventional statistical methods model spatially smooth variations in the wafers. However, actual wafers can exhibit discontinuous variations that are systematically caused by the manufacturing environment, such as shot dependence. In this paper, we propose a modeling method that considers discontinuous variations in wafer characteristics by applying the knowledge of manufacturing engineers to a model estimated using Gaussian process regression. In the proposed method, the process variation is decomposed into systematic discontinuous and global components to improve estimation accuracy. An evaluation performed using an industrial production test dataset indicates that the proposed method effectively reduces the estimation error for an entire wafer by over 36% compared with conventional methods.

321-340hit(26286hit)