The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

5661-5680hit(5768hit)

  • Relaxation-Based Circuit Simulation Techniques in the Frequency Domain

    Hiroaki MAKINO  Hideki ASAI  

     
    PAPER-Modeling and Simulation

      Vol:
    E76-A No:4
      Page(s):
    626-630

    This paper describes the novel relaxation-based algorithm for the harmonic analysis of nonlinear circuits. First, we present Iterated Spectrum Analysis based on harmonic balance method, where the harmonic balance method is applied to every node independently. As a result, we can avoid dealing with large scale Jacobian matrices and reduce the total simulation time, compared with the conventional method based on Galerkin's procedure or the harmonic balance method. Next, we define the frequency domain latency. Furthermore, we refer to the possibility for exploitation of three types of latency, i.e., relaxation iteration latency, frequency domain latency and Newton iteration latency. And we propose the multirate-sampling technique based on the consideration of the frequency domain latency. Finally, we apply the present technique to the simple analog circuit simulation and verify its availability for the harmonic analysis.

  • A Waveform Relaxation Method Applicable to the Simulation of ECL Circuits with Gate Level Partitioning

    Vijaya Gopal BANDI  Hideki ASAI  

     
    LETTER-Neural Networks

      Vol:
    E76-A No:4
      Page(s):
    657-660

    This paper describes a novel but simple method of implementing waveform relaxation technique for bipolar circuits involving ECL gates. This method performs gate level partitioning of ECL circuits not only during the cutoff state of the input transistor but also when the input transistor is in its active state. Partitioning at all times has become possible due to the favorable property of input and output stages of ECL gates. It is shown that this method is faster than direct method even when the circuits containing only few gates is simulated. Further, it is shown that the present method is applicable to the case where the interconnections between the ECL gates is treated as lossy transmission lines.

  • A Novel Design of Very Low Sensitivity Narrow-Band Band-Pass Switched-Capacitor Filters

    Sin Eam TAN  Takahiro INOUE  Fumio UENO  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    310-316

    In this paper, a design method is described for very low sensitivity fully-balanced narrow-band band-pass switched-capacitor filters (SCF's) whose worst-case sensitivities of the amplitude responses become zero at every reflection zero. The proposed method is based on applying the low-pass to high-pass transformation, the pseudo two-path technique and the capacitance-ratio reduction technique to very low sensitivity low-pass SC ladder filters. A design example of the band-pass SCF with a quality factor Q250 is given to verify the proposed method. The remarkable advantages of this approach are very low sensitivity to element-value variations, a small capacitance spread, a small total capacitance, and clock-feedthrough noise immunity inside the passband.

  • Mixed Mode Circuit Simulation Using Dynamic Partitioning

    Masakatsu NISHIGAKI  Nobuyuki TANAKA  Hideki ASAI  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    292-298

    This paper describes a mixed mode circuit simulation by the direct and relaxation-based methods with dynamic network partitioning. For the efficient circuit simulation by the direct method, the algorithms with circuit partitioning and latency technique have been studied. Recently, the hierarchical decomposition and latency and their validities have been researched. Network tearing techniques enable independent analysis of each subnetwork except for the local datum nodes. Therefore, if the local datum nodes are also torn, each subnetwork is separated entirely. Since the network separation is based on relaxation approach, the implementation of the separation technique in the circuit simulation by the direct method corresponds to performing the mixed mode simulation by the direct and relaxation-based methods. In this paper, a dynamic "network separation" technique based on the tightness of the coupling between subnetworks is suggested. Then, by the introduction of dynamic network separation into the simulator SPLIT with hierarchical decomposition and latency, the mixed mode circuit simulator, which selects the direct method or the relaxation method and determines the block size of the latent circuit dynamically and suitably, is constructed.

  • Chaotic Phenomena in Nonlinear Circuits with Time-Varying Resistors

    Yoshifumi NISHIO  Shinsaku MORI  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E76-A No:3
      Page(s):
    467-475

    In this paper, four simple nonlinear circuits with time-varying resistors are analyzed. These circuits consist of only four elements; a inductor, a capacitor, a diode and a time-varying resistor and are a kind of parametric excitation circuits whose dissipation factors vary with time. In order to analyze chaotic phenomena observed from these circuits a degeneration technique is used, that is, diodes in the circuits are assumed to operate as ideal switches. Thereby the Poincar maps are derived as one-dimensional maps and chaotic phenomena are well explained. Moreover, validity of the analyzing method is confirmed theoretically and experimentally.

  • Design of Robust-Fault-Tolerant Multiple-Valued Arithmetic Circuits and Their Evaluation

    Takeshi KASUGA  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    428-435

    Robust-fault tolerance is a property that a computational result becomes nearly equal to the correct one at the occurrence of faults in digital system. There are many cases where the safety of digital control systems can be maintained if the property is satisfied. In this paper, robust-fault-tolerant three-valued arithmetic modules such as an adder and a multiplier are proposed. The positive and negative integers are represented by the number of 1's and 1's, respectively. The design concept of the arithmetic modules is that a fault makes linearly additive effect with a small value to the final result. Each arithmetic module consists of identical submodules linearly connected, so that multi-stage structure is formed to generate the final output from the last submodule. Between the input and output digits in the submodule some simple functional relation is satisfied with respect to the number of 1's and 1's. Moreover, the output digit value depends on very small portion of the submodules including the input digits. These properties make the linearly additive effect with a small value to the final result in the arithmetic modules even if multiple faults are occurred at the input and output of any gates in the submodules. Not only direct three-valued representation but also the use of three-valued logic circuits is inherently suitable for efficient implementation of the arithmetic VLSI system. The evaluation of the robust-fault-tolerant three-valued arithmetic modules is done with regard to the chip size and the speed using the standard CMOS design rule. As a result, it is made clear that the chip size can be greatly reduced.

  • Multiple-Valued VLSI Image Processor Based on Residue Arithmetic and Its Evaluation

    Makoto HONDA  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    455-462

    The demand for high-speed image processing is obvious in many real-world computations such as robot vision. Not only high throughput but also small latency becomes an important factor of the performance, because of the requirement of frequent visual feedback. In this paper, a high-performance VLSI image processor based on the multiple-valued residue arithmetic circuit is proposed for such applications. Parallelism is hierarchically used to realize the high-performance VLSI image processor. First, spatially parallel architecture that is different from pipeline architecture is considered to reduce the latency. Secondly, residue number arithmetic is introduced. In the residue number arithmetic, data communication between the mod mi arithmetic units is not necessary, so that multiple mod mi arithmetic units can be completely separated to different chips. Therefore, a number of mod mi multiply adders can be implemented on a single VLSI chip based on the modulus-slice concept. Finally, each mod mi arithmetic unit can be effectively implemented in parallel structure using the concept of a pseudoprimitive root and the multiple-valued current-mode circuit technology. Thus, it is made clear that the throughout use of parallelism makes the latency 1/3 in comparison with the ordinary binary implementation.

  • Multiple-Valued Memory Using Floating Gate Devices

    Takeshi SHIMA  Stephanie RINNERT  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    393-402

    This paper discusses multiple-valued memory circuit using floating gate devices. It is an object of the paper to provide a new and improved analog memory device, which permits the memory of an amount of charges that accurately corresponds to analog information to be stored.

  • Architecture of a Parallel Multiple-Valued Arithmetic VLSI Processor Using Adder-Based Processing Elements

    Katsuhiko SHIMABUKURO  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    463-471

    An adder-based arithmetic VLSI processor using the SD number system is proposed for the applications of real-time computation such as intelligent robot system. Especially in the intelligent robot control system, not only high throughput but also small latency is a very important subject to make quick response for the sensor feedback situation, because the next input sample is obtained only after the robot actually moves. It is essential in the VLSI architecture for the intelligent robot system to make the latency as small as possible. The use of parallelism is an effective approach to reduce the latency. To meet the requirement, an architecture of a new multiple-valued arithmetic VLSI processor is developed. In the processor, addition and subtraction are performed by using the single adderbased processing element (PE). More complex basic arithmetic operations such as multiplication and division are performed by the appropriate data communications between the adder-based PEs with preserving their parallelism. In the proposed architecture, fine-grain parallel processing at the adder-based PE level is realized, and all the PEs can be fully utilized for any parallel arithmetic operations according to adder-based data dependency graph. As a result, the processing speed will be greatly increased in comparison with the conventional parallel processors having the different kinds of the arithmetic PEs such as an adder, a multiplier and a divider. To realize the arithmetic VLSI processor using the adder-based PEs, we introduce the signed-digit (SD) number system for the parallel arithmetic operations because the SD arithmetic has the advantage of modularity as well as parallelism. The multiple-valued bidirectional currentmode technology is also used for the implementation of the compact and high-speed adder-based PE, and the reduction of the number of the interconnections. It is demonstrated that these advantges of the multiple-valued technology are fully used for the implementation of the arithmetic VLSI processor. As a result, the latency of the proposed multiple-valued processor is reduced to 25% that of the binary processor integrated in the same chip size.

  • Prospects of Multiple-Valued VLSI Processors

    Takahiro HANYU  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    383-392

    Rapid advances in integrated circuit technology based on binary logic have made possible the fabrication of digital circuits or digital VLSI systems with not only a very large number of devices on a single chip or wafer, but also high-speed processing capability. However, the advance of processing speeds and improvement in cost/performance ratio based on conventional binary logic will not always continue unabated in submicron geometry. Submicron integrated circuits can handle multiple-valued signals at high speed rather than binary signals, especially at data communication level because of the reduced interconnections. The use of nonbinary logic or discrete-analog signal processing will not be out of the question if the multiple-valued hardware algorithms are developed for fast parallel operations. Moreover, in VLSI or ULSI processors the delay time due to global communications between functional modules or chips instead of each functional module itself is the most important factors to determine the total performance. Locally computable hardware implementation and new parallel hardware algorithms natural to multiple-valued data representation and circuit technologies are the key properties to develop VLSI processors in submicron geometry. As a result, multiple-valued VLSI processors make it possible to improve the effective chip density together with the processing speed significantly. In this paper, we summarize several potential advantages of multiple-valued VLSI processors in submicron geometry due to great reduction of interconnection and due to the suitability to locally computable hardware implementation, and demonstrate that some examples of special-purpose multiple-valued VLSI processors, which are a signed-digit arithmetic VLSI processor, a residue arithmetic VLSI processor and a matching VLSI processor can achieve higher performance for real-world computing system.

  • A Synthesis of Complex Allpass Circuits Using the Factorization of Scattering Matrices--Explicit Formulae for Even-Order Real Complementary Filters Having Butterworth or Chebyshev Responses--

    Nobuo MURAKOSHI  Eiji WATANABE  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    317-325

    Low-sensitivity digital filters are required for accurate signal processing. Among many low-sensitivity digital filters, a method using complex allpass circuits is well-known. In this paper, a new synthesis of complex allpass circuits is proposed. The proposed synthesis can be realized more easily either only in the z-domain or in the s-domain than conventional methods. The key concept for the synthesis is based on the factorization of lossless scattering matrices. Complex allpass circuits are interpreted as lossless digital two-port circuits, whose scattering matrices are factored. Furthermore, in the cases of Butterworth, Chebyshev and inverse Chebyshev responses, the explicit formulae for multiplier coefficients are derived, which enable us to synthesize the objective circuits directly from the specifications in the s-domain. Finally design examples verify the effectiveness of the proposed method.

  • Design of a Multiple-Valued Cellular Array

    Naotake KAMIURA  Yutaka HATA  Kazuharu YAMATO  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    412-418

    A method is proposed for realizing any k-valued n-variable function with a celluler array, which consists of linear arrays (called input arrays) and a rectangular array (called control array). In this method, a k-valued n-variable function is divided into kn-1 one-variable functions and remaining (n1)-variable function. The parts of one-variable functions are realized by the input arrays, remaintng the (n1)-variable function is realized by the control array. The array realizing the function is composed by connecting the input arrays with the control array. Then, this array requires (kn2)kn-1 cells and the number is smaller than the other rectangular arrays. Next, a ternary cell circuit and a literal circuit are actually constructed with CMOS transistors and NMOS pass transistors. The experiment shows that these circuits perform the expected operations.

  • VLSI-Oriented Multiple-Valued Current-Mode Arithmetic Circuits Using Redundant Number Representations

    Shoji KAWAHITO  Yasuhiro MITSUI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    446-454

    This paper presents a VLSI-oriented arithmetic design method using a radix-2 redundant number representation with digit set {0, 1, 2} and multiple-valued current-mode (MVCM) circuit technology. We propose a carry-propagation-free (CPF) parallel addition method with redundant digit set {0, 1, 2} which is suitable for the design with MVCM circuits. Several types of CPF parallel adders are compared and the proposed CPF parallel adder with MVCM circuits offers the best total performance with respect to speed, complexity, and power dissipation. The designed basic arithmetic circuits has sufficient noise immunity to the supply voltage fluctuation which is important for stable operations of the VLSI circuits. The CPF parallel adder is effectively used as the reduction scheme of partial products in a high-speed compact multiplier. For example, the designed 3232 bit multiplier reduces the number of active elements to two-third and the number of interconnections to one-fifth of the corresponding binary Wallace tree multiplier, where the speed is almost the same. The structure is simple and regular. The static power dissipation of the designed 32-bit multiplier is estimated to be the mean value of 212 mW and the worst case of 708 mW. The total power including dynamic power dissipation would not be so large compared with that of the 32-bit binary CMOS multiplier reported under 10 MHz operation.

  • Multiple-Valued Static Random-Access-Memory Design and Application

    Zheng TANG  Okihiko ISHIZUKA  Hiroki MATSUMOTO  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    403-411

    In this paper, a general theory on multiple-valued static random-access-memory (RAM) is investigated. A criterion for a stable and an unstable modes is proved with a strict mathematical method and expressed with a diagrammatic representation. Based on the theory, an NMOS 6-transistor ternary and a quaternary static RAM (SRAM) cells are proposed and simulated with PSPICE. The detail circuit design and realization are analyzed. A 10-valued CMOS current-mode static RAM cell is also presented and fabricated with standard 5-µm CMOS technology. A family of multiple-valued flip-flops is presented and they show to have desirable properties for use in multiple-valued sequential circuits. Both PSPICE simulations and experiments indicate that the general theory presented are very useful and effective tools in the optimum design and circuit realization of multiple-valued static RAMs and flip-flops.

  • Multi-Step Function MOS Transistor Circuits

    Shinji KARASAWA  Kazuhiko YAMANOUCHI  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    357-363

    This paper describes operating characteristics of a new device named multi-step function MOS transistor (MSF MOSFET) which has stair-shaped I-V curve caused by a stairshaped gap between drain and gate. A quantizing inverter is obtained by using only a single MSF MOSFET as a coupling element of an emitter common amplifier. A pair of the quantizing inverters whose input and output are cross-coupled to each other has multi-stable states. This multiple-valued (MV) flip-flop is available for MV registers and MV memories whose states are changeable by an analog input voltage.

  • Prospects for Multiple-Valued Integrated Circuits

    Kenneth Carless SMITH  P.Glenn GULAK  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    372-382

    The evolution of Multiple-Valued Logic (MVL) circuits has been inexorably tied to the rapid technological changes induced by evolving needs and emerging developments in computing methodologies. Unfortunately for MVL, the numbers of designers of technologies and circuits whose lives are dedicated to the improvement of binary techniques, are large and overwhelming. Correspondingly, technological developments in MVL typically await the appearance of a problem or technique in the larger binary world to motivate and/or make possible some new advance. Such opportunities are inevitably quite transient since each such problem is simultaneously attacked by many others of a more conventional bent, and, as well, each technological change begets yet another, quickly. It is in the sensing of this reality that the present paper is written. Correspondingly, its thrust is two-fold: One target is the possibility of encouraging a leap ahead through modest technological projection. The other is the possibility of identifying application areas that already exist in this unbalanced competition, but which are specially suited to multiple-valued solutions. For example, it has been clear for decades that one such area is that of arithmetic. Correspondingly, we in MVL must strive quickly to concentrate our efforts on applications that exploit such demonstrable strengths. Some such applications are includes here; others are visible historically, many probably remain to be found: Search on!

  • The Recognition System with Two Channels at Different Resolution for Detecting Spike in Human's EEG

    Zheng-Wei TANG  Naohiro ISHII  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E76-D No:3
      Page(s):
    377-387

    The properties of the Haar Transform (HT) are discussed based on the Wavelet Transform theory. A system with two channels at resolution 2-1 and 2-2 for detecting paroxysm-spike in human's EEG is presented according to the multiresolution properties of the HT. The system adopts a coarse-to-fine strategy. First, it performs the coarse recognition on the 2-2 channel for selecting the candidate of spike in terms of rather relaxed criterion. Then, if the candidate appears, the fine recognition on the 2-1 channel is carried out for detecting spike in terms of stricter criterion. Three features of spike are extracted by investigating its intrinsic properties based on the HT. In the case of having no knowledge of prior probability of the presence of spike, the Neyman-Pearson criteria is applied to determining thresholds on the basis of the probability distribution of background and spike obtained by the results of statistical analysis to minimize error probability. The HT coefficients at resolution 2-2 and 2-1 can be computed individually and the data are compressed with 4:1 and 2:1 respectively. A half wave is regarded as the basic recognition unit so as to be capable of detecting negative and positive spikes simultaneously. The system provides a means of pattern recognition for non-stationary signal including sharp variation points in the transform domain. It is specially suitable and efficient to recognize the transient wave with small probability of occurrence in non-stationary signal. The practical examples show the performance of the system.

  • On the Performance of Multivalued Integrated Circuits: Past, Present and Future

    Daniel ETIEMBLE  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    364-371

    We examine the characteristics of the past successful m-valued I2L and ROMs that have been designed and we discuss the reasons of their success and withdraw. We look at the problems associated with scaling of m-valued CMOS current mode circuits. Then we discuss the tolerance issue, the respective propagation delays of binary and m-valued ICs and the interconnection issue. We conclude with the challenges for m-valued circuits in the competition with the exponential performance increase of binary circuits.

  • Architecture and Mechanism of the Control and OAM Information Transport Network Using a Distributed Directory System

    Laurence DEMOUNEM  Hideaki ARAI  Masatoshi KAWARASAKI  

     
    PAPER

      Vol:
    E76-B No:3
      Page(s):
    291-303

    The current telecommunication network is structured in two layers: The intelligent layer that includes Intelligent Network (IN) nodes and Operation, Administration and Maintenance (OAM) nodes, and the transport layer that includes Network Elements (NEs). The transport layer carries user Information (Iu) from end-users as well as control and OAM Information (Ic&o) from IN/OAM nodes. The quick deployment of new IN services and OAM capabilities that will need (a) flexibility and easy management, and (b) an effective handling method for searching the huge amount of data among distributed databases, will be two requirements to be satisfied. Integrating various types of Ic&o into a unique Ic&o transport network and using ATM technique as a transport technique satisfies partly the requirement (a). To completely meet both requirements, this paper proposes the following solutions:(a) Intelligent layer connections and transport layer connections should be managed independently: The necessary mapping between the Logical Destination Address (LDA) that represents the logical address of the physical entity where data are routed, combined with the Quality Of Service (QOS) type, and the ATM connection IDentifier (ID), that is to say the Virtual Channel Identifier/ Virtual Path Identifier (VCI/VPI), is provided by specific nodes (the Ic&o network Management Nodes (Ic&o MNs)) belonging to an intermediate layer, i.e., the Ic&o network management layer.(b) The widely distributed aspect of the databases also needs a very effective data handling method. This paper proposes to implement a Distributed Directory System (DDS) into both intelligent nodes and Ic&o MNs.In order to apply the DDS function to 2 functional levels, the following items are studied: First, the possible mapping of DDS functions into the intelligent node functions is proposed. Second, this paper gives an interaction scenario between intelligent nodes and Ic&o MNs, to translate the LDA/QOS type into VPI/VCI. Finally, the analysis of the mapping of LDA/QOS type into VCI/VPI at the ATM level shows that the Ic&o network based on VP backbone offers the best compromise between flexibility, complexity and cost.

  • New Electronically Tunable Integrators and Differentiators

    R. NANDI  S. K. SANYAL  D. LAHIRI  D. PAL  

     
    LETTER-Analog Circuits and Signal Processing

      Vol:
    E76-A No:3
      Page(s):
    476-479

    Some new circuit configurations for dual-input integrators and differentiators are proposed. The use of a multiplier device around the Operational Amplifier (OA) yields electronic tunability of their time-constant (To) by a Control Voltage (Vx). Experimental results in support of theoretical design and analysis are included.

5661-5680hit(5768hit)