The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NBTI(17hit)

1-17hit
  • Identification and Application of Invariant Critical Paths under NBTI Degradation

    Song BIAN  Shumpei MORITA  Michihiro SHINTANI  Hiromitsu AWANO  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2797-2806

    As technology further scales semiconductor devices, aging-induced device degradation has become one of the major threats to device reliability. In addition, aging mechanisms like the negative bias temperature instability (NBTI) are known to be sensitive to workload (i.e., signal probability) that is hard to be assumed at design phase. In this work, we analyze the workload dependence of NBTI degradation using a processor, and propose a novel technique to estimate the worst-case paths. In our approach, we exploit the fact that the deterministic nature of circuit structure limits the amount of NBTI degradation on different paths, and propose a two-stage path extraction algorithm to identify the invariant critical paths (ICPs) in the processor. Utilizing these paths, we also propose an optimization technique for the replacement of internal node control logic that mitigates the NBTI degradation in the design. Through numerical experiment on two processor designs, we achieved nearly 300x reduction in the sheer number of paths on both designs. Utilizing the extracted ICPs, we achieved 96x-197x speedup without loss in mitigation gain.

  • Efficient Aging-Aware Failure Probability Estimation Using Augmented Reliability and Subset Simulation

    Hiromitsu AWANO  Takashi SATO  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2807-2815

    A circuit-aging simulation that efficiently calculates temporal change of rare circuit-failure probability is proposed. While conventional methods required a long computational time due to the necessity of conducting separate calculations of failure probability at each device age, the proposed Monte Carlo based method requires to run only a single set of simulation. By applying the augmented reliability and subset simulation framework, the change of failure probability along the lifetime of the device can be evaluated through the analysis of the Monte Carlo samples. Combined with the two-step sample generation technique, the proposed method reduces the computational time to about 1/6 of that of the conventional method while maintaining a sufficient estimation accuracy.

  • Utilization of Path-Clustering in Efficient Stress-Control Gate Replacement for NBTI Mitigation

    Shumpei MORITA  Song BIAN  Michihiro SHINTANI  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1464-1472

    Replacement of highly stressed logic gates with internal node control (INC) logics is known to be an effective way to alleviate timing degradation due to NBTI. We propose a path clustering approach to accelerate finding effective replacement gates. Upon the observation that there exist paths that always become timing critical after aging, critical path candidates are clustered to select representative path in each cluster. With efficient data structure to further reduce timing calculation, INC logic optimization has first became tractable in practical time. Through the experiments using a processor, 171x speedup has been demonstrated while retaining almost the same level of mitigation gain.

  • Efficient Aging-Aware SRAM Failure Probability Calculation via Particle Filter-Based Importance Sampling

    Hiromitsu AWANO  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1390-1399

    An efficient Monte Carlo (MC) method for the calculation of failure probability degradation of an SRAM cell due to negative bias temperature instability (NBTI) is proposed. In the proposed method, a particle filter is utilized to incrementally track temporal performance changes in an SRAM cell. The number of simulations required to obtain stable particle distribution is greatly reduced, by reusing the final distribution of the particles in the last time step as the initial distribution. Combining with the use of a binary classifier, with which an MC sample is quickly judged whether it causes a malfunction of the cell or not, the total number of simulations to capture the temporal change of failure probability is significantly reduced. The proposed method achieves 13.4× speed-up over the state-of-the-art method.

  • Reducing Aging Effects on Ternary CAM

    Ing-Chao LIN  Yen-Han LEE  Sheng-Wei WANG  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:7
      Page(s):
    878-891

    Ternary content addressable memory (TCAM), which can store 0, 1, or X in its cells, is widely used to store routing tables in network routers. Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI), which increase Vth and degrade transistor switching speed, have become major reliability challenges. This study analyzes the signal probability of routing tables. The results show that many cells retain static stress and suffer significant degradation caused by NBTI and PBTI effects. The bit flipping technique is improved and proactive power gating recovery is proposed to mitigate NBTI and PBTI effects. In order to maintain the functionality of TCAM after bit flipping, a novel TCAM cell design is proposed. Simulation results show that compared to the original architecture, the bit flipping technique improves read static noise margin (SNM) for data and mask cells by 16.84% and 29.94%, respectively, and reduces search time degradation by 12.95%. The power gating technique improves read SNM for data and mask cells by 12.31% and 20.92%, respectively, and reduces search time degradation by 17.57%. When both techniques are used, read SNM for data and mask cells is improved by 17.74% and 30.53%, respectively, and search time degradation is reduced by 21.01%.

  • Fast Estimation of NBTI-Induced Delay Degradation Based on Signal Probability

    Song BIAN  Michihiro SHINTANI  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1400-1409

    As technology further scales semiconductor devices, aging-induced device degradation has become one of the major threats to device reliability. Hence, taking aging-induced degradation into account during the design phase can greatly improve the reliability of the manufactured devices. However, accurately estimating the aging effect for extremely large circuits, like processors, is time-consuming. In this research, we focus on the negative bias temperature instability (NBTI) as the aging-induced degradation mechanism, and propose a fast and efficient way of estimating NBTI-induced delay degradation by utilizing static-timing analysis (STA) and simulation-based lookup table (LUT). We modeled each type of gates at different degradation levels, load capacitances and input slews. Using these gate-delay models, path delays of arbitrary circuits can be efficiently estimated. With a typical five-stage pipelined processor as the design target, by comparing the calculated delay from LUT with the reference delay calculated by a commercial circuit simulator, we achieved 4114 times speedup within 5.6% delay error.

  • NBTI Mitigation Method by Inputting Random Scan-In Vectors in Standby Time

    Hiroaki KONOURA  Toshihiro KAMEDA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1483-1491

    Negative Bias Temperature Instability (NBTI) is one of the serious concerns for long-term circuit performance degradation. NBTI degrades PMOS transistors under negative bias, whereas they recover once negative bias is removed. In this paper, we propose a mitigation method for NBTI-induced performance degradation that exploits the recovery property by shifting random input sequence through scan paths. With this method, we prevent consecutive stress that causes large degradation. Experimental results reveal that random scan-in vectors successfully mitigate NBTI and the path delay degradation is reduced by 71% in a test case when standby mode occupies 10% of total time. We also confirmed that 8-bit LFSR is capable of random number generation for this purpose with low area and power overhead.

  • Modeling of NBTI Stress Induced Hole-Trapping and Interface-State-Generation Mechanisms under a Wide Range of Bias Conditions

    Chenyue MA  Hans Jürgen MATTAUSCH  Masataka MIYAKE  Takahiro IIZUKA  Kazuya MATSUZAWA  Seiichiro YAMAGUCHI  Teruhiko HOSHIDA  Akinori KINOSHITA  Takahiko ARAKAWA  Jin HE  Mitiko MIURA-MATTAUSCH  

     
    PAPER-Electronic Components

      Vol:
    E96-C No:10
      Page(s):
    1339-1347

    A predictive compact model of p-MOSFET negative bias temperature instability (NBTI) degradation for circuit simulation is reported with unified description of the interface-state-generation and hole-trapping mechanisms. It is found that the hole-trapping is responsible for the initial stage of the stress degradation, and the interface-state generation dominates the degradation afterwards, especially under high stress conditions. The predictive compact model with 8 parameters enables to reproduce the measurement results of the NBTI degradation under a wide range of stress bias conditions. Finally, the developed NBTI model is implemented into the compact MOSFET model HiSIM for circuit degradation simiulation.

  • NBTI Reliability of PFETs under Post-Fabrication Self-Improvement Scheme for SRAM

    Nurul Ezaila ALIAS  Anil KUMAR  Takuya SARAYA  Shinji MIYANO  Toshiro HIRAMOTO  

     
    BRIEF PAPER

      Vol:
    E96-C No:5
      Page(s):
    620-623

    In this paper, negative bias temperature instability (NBTI) reliability of pFETs is analyzed under the post-fabrication SRAM self-improvement scheme that we have developed recently, where cell stability is self-improved by simply applying high stress voltage to supply voltage terminal (VDD) of SRAM cells. It is newly found that there is no significant difference in both threshold voltage and drain current degradation by NBTI stress between fresh PFETs and PFETs after self-improvement scheme application, indicating that the self-improvement scheme has no critical reliability problem.

  • Effects of Fluorine Implantation on 1/f Noise, Hot Carrier and NBTI Reliability of MOSFETs

    Jae-Hyung JANG  Hyuk-Min KWON  Ho-Young KWAK  Sung-Kyu KWON  Seon-Man HWANG  Jong-Kwan SHIN  Seung-Yong SUNG  Yi-Sun CHUNG  Da-Soon LEE  Hi-Deok LEE  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    624-629

    The effects of fluorine implantation on flicker noise and reliability of NMOSFET and PMOSFETs were concurrently investigated. The flicker noise of an NMOSFET was decreased about 66% by fluorine implantation, and that of a PMOSET was decreased about 76%. As indicated by the results, fluorine implantation is one of the methods that can be used to improve the noise characteristics of MOSFET devices. However, hot-carrier degradation was enhanced by fluorine implantation in NMOSFETs, which can be related to the difference of molecular binding within the gate oxide. On the contrary, in case of PMOSFETs, NBTI life time was increased by fluorine implantation. Therefore, concurrent investigation of hot-carrier and NBTI reliability and flicker noise is necessary in developing MOSFETs for analog/digital mixed signal applications.

  • Stress Probability Computation for Estimating NBTI-Induced Delay Degradation

    Hiroaki KONOURA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E94-A No:12
      Page(s):
    2545-2553

    PMOS stress (ON) probability has a strong impact on circuit timing degradation due to NBTI effect. This paper evaluates how the granularity of stress probability calculation affects NBTI prediction using a state-of-the-art long term prediction model. Experimental evaluations show that the stress probability should be estimated at transistor level to accurately predict the increase in delay, especially when the circuit operation and/or inputs are highly biased. We then devise and evaluate two annotation methods of stress probability to gate-level timing analysis; one guarantees the pessimism desirable for timing analysis and the other aims to obtain the result close to transistor-level timing analysis. Experimental results show that gate-level timing analysis with transistor-level stress probability calculation estimates the increase in delay with 12.6% error.

  • A Dynamic Continuous Signature Monitoring Technique for Reliable Microprocessors

    Makoto SUGIHARA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    477-486

    Reliability issues such as a soft error and NBTI (negative bias temperature instability) have become a matter of concern as integrated circuits continue to shrink. It is getting more and more important to take reliability requirements into account even for consumer products. This paper presents a dynamic continuous signature monitoring (DCSM) technique for high reliable computer systems. The DCSM technique dynamically generates reference signatures as well as runtime ones during executing a program. The DCSM technique stores the generated signatures in a signature table, which is a small storage circuit in a microprocessor, unlike the conventional static continuous signature monitoring techniques and contributes to saving program or data memory space that stores the signatures. Our experiments showed that our DCSM technique protected 1.4-100.0% of executed instructions depending on the size of signature tables.

  • Short Term Cell-Flipping Technique for Mitigating SNM Degradation Due to NBTI

    Yuji KUNITAKE  Toshinori SATO  Hiroto YASUURA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    520-529

    Negative Bias Temperature Instability (NBTI) is one of the major reliability problems in advanced technologies. NBTI causes threshold voltage shift in a PMOS transistor. When the PMOS transistor is biased to negative voltage, threshold voltage shifts to negatively. On the other hand, the threshold voltage recovers if the PMOS transistor is positively biased. In an SRAM cell, due to NBTI, threshold voltage degrades in the load PMOS transistors. The degradation has the impact on Static Noise Margin (SNM), which is a measure of read stability of a 6-T SRAM cell. In this paper, we discuss the relationship between NBTI degradation in an SRAM cell and the dynamic stress and recovery condition. There are two important characteristics. One is a stress probability, which is defined as the rate that the PMOS transistor is negatively biased. The other is a stress and recovery cycle, which is defined as the switching interval of an SRAM value. In our observations, in order to mitigate the NBTI degradation, the stress probability should be small and the stress and recovery cycle should be shorter than 10 msec. Based on the observations, we propose a novel cell-flipping technique, which makes the stress probability close to 50%. In addition, we show results of the case studies, which apply the cell-flipping technique to register file and cache memories.

  • All-Digital On-Chip Monitor for PMOS and NMOS Process Variability Utilizing Buffer Ring with Pulse Counter

    Tetsuya IIZUKA  Jaehyun JEONG  Toru NAKURA  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    487-494

    This paper proposes an all-digital process variability monitor which utilizes a simple buffer ring with a pulse counter. The proposed circuit monitors the process variability according to a count number of a single pulse which propagates on the buffer ring and a fixed logic level after the pulse vanishes. The proposed circuit has been fabricated in 65 nm CMOS process and the measurement results demonstrate that we can monitor the PMOS and NMOS variabilities independently using the proposed monitoring circuit. The proposed monitoring technique is suitable not only for the on-chip process variability monitoring but also for the in-field monitoring of aging effects such as negative/positive bias instability (NBTI/PBTI).

  • Highly Reliable and Drivability-Enhanced MOS Transistors with Rounded Nanograting Channels

    Takashi ITO  Xiaoli ZHU  Shin-Ichiro KUROKI  Koji KOTANI  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E93-C No:11
      Page(s):
    1638-1644

    The structure of the nanograting channel MOSFET was optimized by simply rounding the corners of the nanogratings. The current drivabilities of the optimized nanograting channel MOSFETs were enhanced by about 20% and 50% for both n-channel and p-channel MOSFETs, respectively. The mobility changes were analyzed on the basis of channel stress as well as theoretical change of mobilities by various surface orientations. The internal compressive stress of 0.23% was measured in the channel. By suppressing the electric field increase at the corner edge of the nanograting channel to less than 10%, the fabricated rounded nanograting MOSFETs achieved lifetimes of NBTI and TDDB as long as those of conventional planar devices.

  • Temperature-Aware NBTI Modeling Techniques in Digital Circuits

    Hong LUO  Yu WANG  Rong LUO  Huazhong YANG  Yuan XIE  

     
    PAPER-Integrated Electronics

      Vol:
    E92-C No:6
      Page(s):
    875-886

    Negative bias temperature instability (NBTI) has become a critical reliability phenomena in advanced CMOS technology. In this paper, we propose an analytical temperature-aware dynamic NBTI model, which can be used in two circuit operation cases: executing tasks with different temperatures, and switching between active and standby mode. A PMOS Vth degradation model and a digital circuits' temporal performance degradation estimation method are developed based on our NBTI model. The simulation results show that: 1) the execution of a low temperature task can decrease ΔVth due to NBTI by 24.5%; 2) switching to standby mode can decrease ΔVth by 52.3%; 3) for ISCAS85 benchmark circuits, the delay degradation can decrease significantly if the circuit execute low temperature task or switch to standby mode; 4) we have also observed the execution time's ratio of different tasks and the ratio of active to standby time both have a considerable impact on NBTI effect.

  • Theoretical Simulation of the Mixing Performance of Distributed Superconducting Tunnel Junction Arrays at 1.2 THz

    Sheng-Cai SHI  Wen-Lei SHAN  Jing LI  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    556-565

    In this paper we focus on the numerical simulation of the mixing behaviors of distributed superconducting junction arrays at 1.2 THz. A novel type of superconducting tunnel junctions, i.e., NbN/AlN/Nb, which have a relatively high gap voltage (4.3 mV) and can reach a critical current density as high as several tens of kA/cm2, are proposed for this characterization along with conventional Nb/AlOx/Nb junctions. The former is incorporated with a NbN/SiO2/Al tuning circuit, and the latter with a Nb/SiO2/Al and a NbTiN/SiO2/Al tuning circuits. The noise performance, local-oscillator power requirement, IF bandwidth, and optimum embedding impedance are thoroughly characterized for the two types of distributed superconducting junction arrays.