The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PU(3318hit)

261-280hit(3318hit)

  • Precoded Physical Layer Network Coding with Coded Modulation in MIMO-OFDM Bi-Directional Wireless Relay Systems Open Access

    Satoshi DENNO  Kazuma YAMAMOTO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    99-108

    This paper proposes coded modulation for physical layer network coding in multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) bi-directional wireless relay systems where precoding is applied. The proposed coded modulation enables the relays to decode the received signals, which improves the transmission performance. Soft input decoding for the proposed coded modulation is proposed. Furthermore, we propose two precoder weight optimization techniques, called “per subcarrier weight optimization” and “total weight optimization”. This paper shows a precoder configuration based on the optimization with the lattice reduction or the sorted QR-decomposition. The performance of the proposed network coding is evaluated by computer simulation in a MIMO-OFDM two-hop wireless relay system with the 16 quadrature amplitude modulation (QAM) or the 256QAM. The proposed coded modulation attains a coding gain of about 2dB at the BER of 10-4. The total weight optimization achieves about 1dB better BER performance than the other at the BER of 10-4.

  • Load Balancing for Energy-Harvesting Mobile Edge Computing

    Ping ZHAO  Jiawei TAO  Abdul RAUF  Fengde JIA  Longting XU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2020/07/27
      Vol:
    E104-A No:1
      Page(s):
    336-342

    With the development of cloud computing, the Mobile Edge Computing has emerged and attracted widespread attentions. In this paper, we focus on the load balancing in MEC with energy harvesting. We first introduce the load balancing in MEC as a problem of minimizing both the energy consumption and queue redundancy. Thereafter, we adapt such a optimization problem to the Lyapunov algorithm and solve this optimization problem. Finally, extensive simulation results validate that the obtained strategy improves the capabilities of MEC systems.

  • A Scheme of Reversible Data Hiding for the Encryption-Then-Compression System

    Masaaki FUJIYOSHI  Ruifeng LI  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2020/10/21
      Vol:
    E104-D No:1
      Page(s):
    43-50

    This paper proposes an encryption-then-compression (EtC) system-friendly data hiding scheme for images, where an EtC system compresses images after they are encrypted. The EtC system divides an image into non-overlapping blocks and applies four block-based processes independently and randomly to the image for visual encryption of the image. The proposed scheme hides data to a plain, i.e., unencrypted image and the scheme can take hidden data out from the image encrypted by the EtC system. Furthermore, the scheme serves reversible data hiding, so it can perfectly recover the unmarked image from the marked image whereas the scheme once distorts unmarked image for hiding data to the image. The proposed scheme copes with the three of four processes in the EtC system, namely, block permutation, rotation/flipping of blocks, and inverting brightness in blocks, whereas the conventional schemes for the system do not cope with the last one. In addition, these conventional schemes have to identify the encrypted image so that image-dependent side information can be used to extract embedded data and to restore the unmarked image, but the proposed scheme does not need such identification. Moreover, whereas the data hiding process must know the block size of encryption in conventional schemes, the proposed scheme needs no prior knowledge of the block size for encryption. Experimental results show the effectiveness of the proposed scheme.

  • Application Mapping and Scheduling of Uncertain Communication Patterns onto Non-Random and Random Network Topologies

    Yao HU  Michihiro KOIBUCHI  

     
    PAPER-Computer System

      Pubricized:
    2020/07/20
      Vol:
    E103-D No:12
      Page(s):
    2480-2493

    Due to recent technology progress based on big-data processing, many applications present irregular or unpredictable communication patterns among compute nodes in high-performance computing (HPC) systems. Traditional communication infrastructures, e.g., torus or fat-tree interconnection networks, may not handle well their matchmaking problems with these newly emerging applications. There are already many communication-efficient application mapping algorithms for these typical non-random network topologies, which use nearby compute nodes to reduce the network distances. However, for the above unpredictable communication patterns, it is difficult to efficiently map their applications onto the non-random network topologies. In this context, we recommend using random network topologies as the communication infrastructures, which have drawn increasing attention for the use of HPC interconnects due to their small diameter and average shortest path length (ASPL). We make a comparative study to analyze the impact of application mapping performance on non-random and random network topologies. We propose using topology embedding metrics, i.e., diameter and ASPL, and list several diameter/ASPL-based application mapping algorithms to compare their job scheduling performances, assuming that the communication pattern of each application is unpredictable to the computing system. Evaluation with a large compound application workload shows that, when compared to non-random topologies, random topologies can reduce the average turnaround time up to 39.3% by a random connected mapping method and up to 72.1% by a diameter/ASPL-based mapping algorithm. Moreover, when compared to the baseline topology mapping method, the proposed diameter/ASPL-based topology mapping strategy can reduce up to 48.0% makespan and up to 78.1% average turnaround time, and improve up to 1.9x system utilization over random topologies.

  • Battery-Powered Wild Animal Detection Nodes with Deep Learning

    Hiroshi SAITO  Tatsuki OTAKE  Hayato KATO  Masayuki TOKUTAKE  Shogo SEMBA  Yoichi TOMIOKA  Yukihide KOHIRA  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1394-1402

    Since wild animals are causing more accidents and damages, it is important to safely detect them as early as possible. In this paper, we propose two battery-powered wild animal detection nodes based on deep learning that can automatically detect wild animals; the detection information is notified to the people concerned immediately. To use the proposed nodes outdoors where power is not available, we devise power saving techniques for the proposed nodes. For example, deep learning is used to save power by avoiding operations when wild animals are not detected. We evaluate the operation time and the power consumption of the proposed nodes. Then, we evaluate the energy consumption of the proposed nodes. Also, we evaluate the detection range of the proposed nodes, the accuracy of deep learning, and the success rate of communication through field tests to demonstrate that the proposed nodes can be used to detect wild animals outdoors.

  • L0 Norm Optimization in Scrambled Sparse Representation Domain and Its Application to EtC System

    Takayuki NAKACHI  Hitoshi KIYA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:12
      Page(s):
    1589-1598

    In this paper, we propose L0 norm optimization in a scrambled sparse representation domain and its application to an Encryption-then-Compression (EtC) system. We design a random unitary transform that conserves L0 norm isometry. The resulting encryption method provides a practical orthogonal matching pursuit (OMP) algorithm that allows computation in the encrypted domain. We prove that the proposed method theoretically has exactly the same estimation performance as the nonencrypted variant of the OMP algorithm. In addition, we demonstrate the security strength of the proposed secure sparse representation when applied to the EtC system. Even if the dictionary information is leaked, the proposed scheme protects the privacy information of observed signals.

  • Traffic-Independent Multi-Path Routing for High-Throughput Data Center Networks

    Ryuta KAWANO  Ryota YASUDO  Hiroki MATSUTANI  Michihiro KOIBUCHI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2020/08/06
      Vol:
    E103-D No:12
      Page(s):
    2471-2479

    Network throughput has become an important issue for big-data analysis on Warehouse-Scale Computing (WSC) systems. It has been reported that randomly-connected inter-switch networks can enlarge the network throughput. For irregular networks, a multi-path routing method called k-shortest path routing is conventionally utilized. However, it cannot efficiently exploit longer-than-shortest paths that would be detour paths to avoid bottlenecks. In this work, a novel routing method called k-optimized path routing to achieve high throughput is proposed for irregular networks. We introduce a heuristic to select detour paths that can avoid bottlenecks in the network to improve the average-case network throughput. Experimental results by network simulation show that the proposed k-optimized path routing can improve the saturation throughput by up to 18.2% compared to the conventional k-shortest path routing. Moreover, it can reduce the computation time required for optimization to 1/2760 at a minimum compared to our previously proposed method.

  • Efficient Secure Neural Network Prediction Protocol Reducing Accuracy Degradation

    Naohisa NISHIDA  Tatsumi OBA  Yuji UNAGAMI  Jason PAUL CRUZ  Naoto YANAI  Tadanori TERUYA  Nuttapong ATTRAPADUNG  Takahiro MATSUDA  Goichiro HANAOKA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:12
      Page(s):
    1367-1380

    Machine learning models inherently memorize significant amounts of information, and thus hiding not only prediction processes but also trained models, i.e., model obliviousness, is desirable in the cloud setting. Several works achieved model obliviousness with the MNIST dataset, but datasets that include complicated samples, e.g., CIFAR-10 and CIFAR-100, are also used in actual applications, such as face recognition. Secret sharing-based secure prediction for CIFAR-10 is difficult to achieve. When a deep layer architecture such as CNN is used, the calculation error when performing secret calculation becomes large and the accuracy deteriorates. In addition, if detailed calculations are performed to improve accuracy, a large amount of calculation is required. Therefore, even if the conventional method is applied to CNN as it is, good results as described in the paper cannot be obtained. In this paper, we propose two approaches to solve this problem. Firstly, we propose a new protocol named Batch-normalizedActivation that combines BatchNormalization and Activation. Since BatchNormalization includes real number operations, when performing secret calculation, parameters must be converted into integers, which causes a calculation error and decrease accuracy. By using our protocol, calculation errors can be eliminated, and accuracy degradation can be eliminated. Further, the processing is simplified, and the amount of calculation is reduced. Secondly, we explore a secret computation friendly and high accuracy architecture. Related works use a low-accuracy, simple architecture, but in reality, a high accuracy architecture should be used. Therefore, we also explored a high accuracy architecture for the CIFAR10 dataset. Our proposed protocol can compute prediction of CIFAR-10 within 15.05 seconds with 87.36% accuracy while providing model obliviousness.

  • Transient Fault Tolerant State Assignment for Stochastic Computing Based on Linear Finite State Machines

    Hideyuki ICHIHARA  Motoi FUKUDA  Tsuyoshi IWAGAKI  Tomoo INOUE  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1464-1471

    Stochastic computing (SC), which is an approximate computation with probabilities, has attracted attention owing to its small area, small power consumption and high fault tolerance. In this paper, we focus on the transient fault tolerance of SC based on linear finite state machines (linear FSMs). We show that state assignment of FSMs considerably affects the fault tolerance of linear FSM-based SC circuits, and present a Markov model for representing the impact of the state assignment on the behavior of faulty FSMs and estimating the expected error significance of the faulty FSM-based SC circuits. Furthermore, we propose a heuristic algorithm for appropriate state assignment that can mitigate the influence of transient faults. Experimental analysis shows that the state assignment has an impact on the transient fault tolerance of linear FSM-based SC circuits and the proposed state assignment algorithm can achieve a quasi-optimal state assignment in terms of high fault tolerance.

  • A Data-Centric Directive-Based Framework to Accelerate Out-of-Core Stencil Computation on a GPU

    Jingcheng SHEN  Fumihiko INO  Albert FARRÉS  Mauricio HANZICH  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/09/07
      Vol:
    E103-D No:12
      Page(s):
    2421-2434

    Graphics processing units (GPUs) are highly efficient architectures for parallel stencil code; however, the small device (i.e., GPU) memory capacity (several tens of GBs) necessitates the use of out-of-core computation to process excess data. Great programming effort is needed to manually implement efficient out-of-core stencil code. To relieve such programming burdens, directive-based frameworks emerged, such as the pipelined accelerator (PACC); however, they usually lack specific optimizations to reduce data transfer. In this paper, we extend PACC with two data-centric optimizations to address data transfer problems. The first is a direct-mapping scheme that eliminates host (i.e., CPU) buffers, which intermediate between the original data and device buffers. The second is a region-sharing scheme that significantly reduces host-to-device data transfer. The extended PACC was applied to an acoustic wave propagator, automatically extending the length of original serial code 2.3-fold to obtain the out-of-core code. Experimental results revealed that on a Tesla V100 GPU, the generated code ran 41.0, 22.1, and 3.6 times as fast as implementations based on Open Multi-Processing (OpenMP), Unified Memory, and the previous PACC, respectively. The generated code also demonstrated usefulness with small datasets that fit in the device capacity, running 1.3 times as fast as an in-core implementation.

  • A Rabin-Karp Implementation for Handling Multiple Pattern-Matching on the GPU

    Lucas Saad Nogueira NUNES  Jacir Luiz BORDIM  Yasuaki ITO  Koji NAKANO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/09/24
      Vol:
    E103-D No:12
      Page(s):
    2412-2420

    The volume of digital information is growing at an extremely fast pace which, in turn, exacerbates the need of efficient mechanisms to find the presence of a pattern in an input text or a set of input strings. Combining the processing power of Graphics Processing Unit (GPU) with matching algorithms seems a natural alternative to speedup the string-matching process. This work proposes a Parallel Rabin-Karp implementation (PRK) that encompasses a fast-parallel prefix-sums algorithm to maximize parallelization and accelerate the matching verification. Given an input text T of length n and p patterns of length m, the proposed implementation finds all occurrences of p in T in O(m+q+n/τ+nm/q) time, where q is a sufficiently large prime number and τ is the available number of threads. Sequential and parallel versions of the PRK have been implemented. Experiments have been executed on p≥1 patterns of length m comprising of m=10, 20, 30 characters which are compared against a text string of length n=227. The results show that the parallel implementation of the PRK algorithm on NVIDIA V100 GPU provides speedup surpassing 372 times when compared to the sequential implementation and speedup of 12.59 times against an OpenMP implementation running on a multi-core server with 128 threads. Compared to another prominent GPU implementation, the PRK implementation attained speedup surpassing 37 times.

  • Pulse Coding Controlled Switching Converter that Generates Notch Frequency to Suit Noise Spectrum

    Yifei SUN  Yasunori KOBORI  Anna KUWANA  Haruo KOBAYASHI  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1331-1340

    This paper proposes a noise reduction technology for a specific frequency band that uses the pulse coding controlled method to automatically set the notch frequency in DC-DC switching converters of communication equipment. For reducing the power levels at the frequency and its harmonics in the switching converter, we often use a frequency-modulated clock. This paper investigates a technology that prevents modulated clock frequency noise from spreading into protected frequency bands; this proposed noise reduction technology does not distribute the switching noise into some specified frequency bands. The notch in the spectrum of the switching pulses is created by the Pulse Width Coding (PWC) method. In communication devices, the noise in the receiving signal band must be as small as possible. The notch frequency is automatically set to the frequency of the received signal by adjusting the clock frequency using the equation Fn = (P+0.5)Fck. Here Fn is the notch frequency, Fck is the clock frequency, and P is a positive integer that determines the noise spectrum location. Therefore, simply be setting the notch frequency to the received signal frequency can suppress the noise present. We confirm with simulations that the proposed technique is effective for noise reduction and notch generation. Also we implement a method of automatic switching between two receiving channels. The conversion voltage ratio in the pulse width coding method switching converter is analyzed and full automatic notch frequency generation is realized. Experiments on a prototype circuit confirm notch frequency generation.

  • NOMA-Based Optimal Multiplexing for Multiple Downlink Service Channels to Maximize Integrated System Throughput Open Access

    Teruaki SHIKUMA  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1367-1374

    We propose a novel non-orthogonal multiple access (NOMA)-based optimal multiplexing method for multiple downlink service channels to maximize the integrated system throughput. In the fifth generation (5G) mobile communication system, the support of various wireless communication services such as massive machine-type communications (mMTC), ultra-reliable low latency communications (URLLC), and enhanced mobile broadband (eMBB) is expected. These services will serve different numbers of terminals and have different requirements regarding the spectrum efficiency and fairness among terminals. Furthermore, different operators may have different policies regarding the overall spectrum efficiency and fairness among services. Therefore, efficient radio resource allocation is essential during the multiplexing of multiple downlink service channels considering these requirements. The proposed method achieves better system performance than the conventional orthogonal multiple access (OMA)-based multiplexing method thanks to the wider transmission bandwidth per terminal and inter-terminal interference cancellation using a successive interference canceller (SIC). Computer simulation results reveal that the effectiveness of the proposed method is especially significant when the system prioritizes the fairness among terminals (including fairness among services).

  • Analysis of Pulse Responses by Dispersion Medium with Periodically Conducting Strips

    Ryosuke OZAKI  Tomohiro KAGAWA  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-C No:11
      Page(s):
    613-616

    In this paper, we analyzed the pulse responses of dispersion medium with periodically conducting strips by using a fast inversion Laplace transform (FILT) method combined with point matching method (PMM) for both the TM and TE cases. Specifically, we investigated the influence of the width and number of the conducting strips on the pulse response and distribution of the electric field.

  • A Filter Design Method of Direct RF Undersampling On-Board Receiver for Ka-Band HTS

    Tomoyuki FURUICHI  Yang GUI  Mizuki MOTOYOSHI  Suguru KAMEDA  Takashi SHIBA  Noriharu SUEMATSU  

     
    PAPER

      Pubricized:
    2020/03/27
      Vol:
    E103-B No:10
      Page(s):
    1078-1085

    In this paper, we propose a radio frequency (RF) anti-aliasing filter design method considering the effect of a roll-off characteristic on a noise figure (NF) in the direct RF undersampling receiver. The proposed method is useful for broadband reception that a system bandwidth (BW) has nearly half of the sampling frequency (1/2 fs). When the system BW is extended nearly 1/2 fs, the roll-off band is out of the desired Nyquist zone and it affects NF additionally. The proposed method offers a design target regarding the roll-off characteristic not only the rejection ratio. The target is helpful as a design guide to meet the allowed NF. We design the filter based on the proposed method and it is applied to the direct RF undersampling on-board receiver for Ka-band high throughput satellite (HTS). The measured NF value of the implemented receiver almost matched the designed value. Moreover, the receiver achieved the reception bandwidth which is 90% of 1/2 fs.

  • 4th Order Moment-Based Linear Prediction for Estimating Ringing Sound of Impulsive Noise in Speech Enhancement Open Access

    Naoto SASAOKA  Eiji AKAMATSU  Arata KAWAMURA  Noboru HAYASAKA  Yoshio ITOH  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/04/02
      Vol:
    E103-A No:10
      Page(s):
    1248-1251

    Speech enhancement has been proposed to reduce the impulsive noise whose frequency characteristic is wideband. On the other hand, it is challenging to reduce the ringing sound, which is narrowband in impulsive noise. Therefore, we propose the modeling of the ringing sound and its estimation by a linear predictor (LP). However, it is difficult to estimate the ringing sound only in noisy speech due to the auto-correlation property of speech. The proposed system adopts the 4th order moment-based adaptive algorithm by noticing the difference between the 4th order statistics of speech and impulsive noise. The brief analysis and simulation results show that the proposed system has the potential to reduce ringing sound while keeping the quality of enhanced speech.

  • Transient Characteristics on Super-Steep Subthreshold Slope “PN-Body Tied SOI-FET” — Simulation and Pulse Measurement — Open Access

    Takayuki MORI  Jiro IDA  Hiroki ENDO  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2020/04/23
      Vol:
    E103-C No:10
      Page(s):
    533-542

    In this study, the transient characteristics on the super-steep subthreshold slope (SS) of a PN-body tied (PNBT) silicon-on-insulator field-effect transistor (SOI-FET) were investigated using technology computer-aided design and pulse measurements. Carrier charging effects were observed on the super-steep SS PNBT SOI-FET. It was found that the turn-on delay time decreased to nearly zero when the gate overdrive-voltage was set to 0.1-0.15 V. Additionally, optimizing the gate width improved the turn-on delay. This has positive implications for the low speed problems of this device. However, long-term leakage current flows on turn-off. The carrier lifetime affects the leakage current, and the device parameters must be optimized to realize both a high on/off ratio and high-speed operation.

  • System Throughput Gain by New Channel Allocation Scheme for Spectrum Suppressed Transmission in Multi-Channel Environments over a Satellite Transponder

    Sumika OMATA  Motoi SHIRAI  Takatoshi SUGIYAMA  

     
    PAPER

      Pubricized:
    2020/03/27
      Vol:
    E103-B No:10
      Page(s):
    1059-1068

    A spectrum suppressed transmission that increases the frequency utilization efficiency, defined as throughput/bandwidth, by suppressing the required bandwidth has been proposed. This is one of the most effective schemes to solve the exhaustion problem of frequency bandwidths. However, in spectrum suppressed transmission, its transmission quality potentially degrades due to the ISI making the bandwidth narrower than the Nyquist bandwidth. In this paper, in order to improve the transmission quality degradation, we propose the spectrum suppressed transmission applying both FEC (forward error correction) and LE (linear equalization). Moreover, we also propose a new channel allocation scheme for the spectrum suppressed transmission, in multi-channel environments over a satellite transponder. From our computer simulation results, we clarify that the proposed schemes are more effective at increasing the system throughput than the scheme without spectrum suppression.

  • Recent Advances in Practical Secure Multi-Party Computation Open Access

    Satsuya OHATA  

     
    INVITED PAPER-cryptography

      Vol:
    E103-A No:10
      Page(s):
    1134-1141

    Secure multi-party computation (MPC) allows a set of parties to compute a function jointly while keeping their inputs private. MPC has been actively studied, and there are many research results both in the theoretical and practical research fields. In this paper, we introduce the basic matters on MPC and show recent practical advances. We first explain the settings, security notions, and cryptographic building blocks of MPC. Then, we show and discuss current situations on higher-level secure protocols, privacy-preserving data analysis, and frameworks/compilers for implementing MPC applications with low-cost.

  • A Compact TF-Based LC-VCO with Ultra-Low-Power Operation and Supply Pushing Reduction for IoT Applications

    Zheng SUN  Dingxin XU  Hongye HUANG  Zheng LI  Hanli LIU  Bangan LIU  Jian PANG  Teruki SOMEYA  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/04/15
      Vol:
    E103-C No:10
      Page(s):
    505-513

    This paper presents a miniaturized transformer-based ultra-low-power (ULP) LC-VCO with embedded supply pushing reduction techniques for IoT applications in 65-nm CMOS process. To reduce the on-chip area, a compact transformer patterned ground shield (PGS) is implemented. The transistors with switchable capacitor banks and associated components are placed underneath the transformer, which further shrinking the on-chip area. To lower the power consumption of VCO, a gm-stacked LC-VCO using the transformer embedded with PGS is proposed. The transformer is designed to provide large inductance to obtain a robust start-up within limited power consumption. Avoiding implementing an off/on-chip Low-dropout regulator (LDO) which requires additional voltage headroom, a low-power supply pushing reduction feedback loop is integrated to mitigate the current variation and thus the oscillation amplitude and frequency can be stabilized. The proposed ULP TF-based LC-VCO achieves phase noise of -114.8dBc/Hz at 1MHz frequency offset and 16kHz flicker corner with a 103µW power consumption at 2.6GHz oscillation frequency, which corresponds to a -193dBc/Hz VCO figure-of-merit (FoM) and only occupies 0.12mm2 on-chip area. The supply pushing is reduced to 2MHz/V resulting in a -50dBc spur, while 5MHz sinusoidal ripples with 50mVPP are added on the DC supply.

261-280hit(3318hit)