The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SIL(368hit)

21-40hit(368hit)

  • New Construction Methods on Multiple Output Resilient Boolean Functions with High Nonlinearity

    Luyang LI  Linhui WANG  Dong ZHENG  Qinlan ZHAO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/08/10
      Vol:
    E105-A No:2
      Page(s):
    87-92

    Construction of multiple output functions is one of the most important problems in the design and analysis of stream ciphers. Generally, such a function has to be satisfied with several criteria, such as high nonlinearity, resiliency and high algebraic degree. But there are mutual restraints among the cryptographic parameters. Finding a way to achieve the optimization is always regarded as a hard task. In this paper, by using the disjoint linear codes and disjoint spectral functions, two classes of resilient multiple output functions are obtained. It has been proved that the obtained functions have high nonlinearity and high algebraic degree.

  • A Novel Construction of 2-Resilient Rotation Symmetric Boolean Functions

    Jiao DU  Shaojing FU  Longjiang QU  Chao LI  Tianyin WANG  Shanqi PANG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/08/03
      Vol:
    E105-A No:2
      Page(s):
    93-99

    In this paper, by using the properties of the cyclic Hadamard matrices of order 4t, an infinite class of (4t-1)-variable 2-resilient rotation symmetric Boolean functions is constructed, and the nonlinearity of the constructed functions are also studied. To the best of our knowledge, this is the first class of direct constructions of 2-resilient rotation symmetric Boolean functions. The spirit of this method is different from the known methods depending on the solutions of an equation system proposed by Du Jiao, et al. Several situations are examined, as the direct corollaries, three classes of (4t-1)-variable 2-resilient rotation symmetric Boolean functions are proposed based on the corresponding sequences, such as m sequences, Legendre sequences, and twin primes sequences respectively.

  • Representation Learning of Tongue Dynamics for a Silent Speech Interface

    Hongcui WANG  Pierre ROUSSEL  Bruce DENBY  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:12
      Page(s):
    2209-2217

    A Silent Speech Interface (SSI) is a sensor-based, Artificial Intelligence (AI) enabled system in which articulation is performed without the use of the vocal chords, resulting in a voice interface that conserves the ambient audio environment, protects private data, and also functions in noisy environments. Though portable SSIs based on ultrasound imaging of the tongue have obtained Word Error Rates rivaling that of acoustic speech recognition, SSIs remain relegated to the laboratory due to stability issues. Indeed, reliable extraction of acoustic features from ultrasound tongue images in real-life situations has proven elusive. Recently, Representation Learning has shown considerable success in learning underlying structure in noisy, high-dimensional raw data. In its unsupervised form, Representation Learning is able to reveal structure in unlabeled data, thus greatly simplifying the data preparation task. In the present article, a 3D Convolutional Neural Network architecture is applied to unlabeled ultrasound images, and is shown to reliably predict future tongue configurations. By comparing the 3DCNN to a simple previous-frame predictor, it is possible to recognize tongue trajectories comprising transitions between regions of stability that correlate with formant trajectories in a spectrogram of the signal. Prospects for using the underlying structural representation to provide features for subsequent speech processing tasks are presented.

  • The Uncontrolled Web: Measuring Security Governance on the Web

    Yuta TAKATA  Hiroshi KUMAGAI  Masaki KAMIZONO  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:11
      Page(s):
    1828-1838

    While websites are becoming more and more complex daily, the difficulty of managing them is also increasing. It is important to conduct regular maintenance against these complex websites to strengthen their security and improve their cyber resilience. However, misconfigurations and vulnerabilities are still being discovered on some pages of websites and cyberattacks against them are never-ending. In this paper, we take the novel approach of applying the concept of security governance to websites; and, as part of this, measuring the consistency of software settings and versions used on these websites. More precisely, we analyze multiple web pages with the same domain name and identify differences in the security settings of HTTP headers and versions of software among them. After analyzing over 8,000 websites of popular global organizations, our measurement results show that over half of the tested websites exhibit differences. For example, we found websites running on a web server whose version changes depending on access and using a JavaScript library with different versions across over half of the tested pages. We identify the cause of such governance failures and propose improvement plans.

  • Individuality-Preserving Silhouette Extraction for Gait Recognition and Its Speedup

    Masakazu IWAMURA  Shunsuke MORI  Koichiro NAKAMURA  Takuya TANOUE  Yuzuko UTSUMI  Yasushi MAKIHARA  Daigo MURAMATSU  Koichi KISE  Yasushi YAGI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    992-1001

    Most gait recognition approaches rely on silhouette-based representations due to high recognition accuracy and computational efficiency. A fundamental problem for those approaches is how to extract individuality-preserved silhouettes from real scenes accurately. Foreground colors may be similar to background colors, and the background is cluttered. Therefore, we propose a method of individuality-preserving silhouette extraction for gait recognition using standard gait models (SGMs) composed of clean silhouette sequences of various training subjects as shape priors. The SGMs are smoothly introduced into a well-established graph-cut segmentation framework. Experiments showed that the proposed method achieved better silhouette extraction accuracy by more than 2.3% than representative methods and better identification rate of gait recognition (improved by more than 11.0% at rank 20). Besides, to reduce the computation cost, we introduced approximation in the calculation of dynamic programming. As a result, without reducing the segmentation accuracy, we reduced 85.0% of the computational cost.

  • Virtual Vault: A Practical Leakage Resilient Scheme Using Space-Hard Ciphers

    Yuji KOIKE  Takuya HAYASHI  Jun KURIHARA  Takanori ISOBE  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    182-189

    Due to the legal reform on the protection of personal information in US/Japan and the enforcement of the General Data Protection Regulation (GDPR) in Europe, service providers are obliged to more securely manage the sensitive data stored in their server. In order to protect this kind of data, they generally employ a cryptographic encryption scheme and secure key management schemes such as a Hardware Security Module (HSM) and Trusted Platform Module (TPM). In this paper, we take a different approach based on the space-hard cipher. The space-hard cipher has an interesting property called the space hardness. Space hardness guarantees sufficient security against the adversary who gains a part of key data, e.g., 1/4 of key data. Combined with a simple network monitoring technique, we develop a practical leakage resilient scheme Virtual Vault, which is secure against the snapshot adversary who has full access to the memory in the server for a short period. Importantly, Virtual Vault is deployable by only a low-price device for network monitoring, e.g. L2 switch, and software of space-hard ciphers and packet analyzer, while typical solutions require a dedicated hardware for secure key managements such as HSM and TPM. Thus, Virtual Vault is easily added on the existing servers which do not have such dedicated hardware.

  • Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric Open Access

    Roberto PROIETTI  Xian XIAO  Marjan FARIBORZ  Pouya FOTOUHI  Yu ZHANG  S. J. Ben YOO  

     
    INVITED PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1190-1198

    This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.

  • High-Speed-Operation of All-Silicon Lumped-Electrode Modulator Integrated with Passive Equalizer Open Access

    Yohei SOBU  Shinsuke TANAKA  Yu TANAKA  

     
    INVITED PAPER

      Pubricized:
    2020/05/15
      Vol:
    E103-C No:11
      Page(s):
    619-626

    Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.

  • Strictly Non-Blocking Silicon Photonics Switches Open Access

    Keijiro SUZUKI  Ryotaro KONOIKE  Satoshi SUDA  Hiroyuki MATSUURA  Shu NAMIKI  Hitoshi KAWASHIMA  Kazuhiro IKEDA  

     
    INVITED PAPER

      Pubricized:
    2020/04/17
      Vol:
    E103-C No:11
      Page(s):
    627-634

    We review our research progress of multi-port optical switches based on the silicon photonics platform. Up to now, the maximum port-count is 32 input ports×32 output ports, in which transmissions of all paths were demonstrated. The switch topology is path-independent insertion-loss (PILOSS) which consists of an array of 2×2 element switches and intersections. The switch presented an average fiber-to-fiber insertion loss of 10.8 dB. Moreover, -20-dB crosstalk bandwidth of 14.2 nm was achieved with output-port-exchanged element switches, and an average polarization-dependent loss (PDL) of 3.2 dB was achieved with a non-duplicated polarization-diversity structure enabled by SiN overpass waveguides. In the 8×8 switch, we demonstrated wider than 100-nm bandwidth for less than -30-dB crosstalk with double Mach-Zehnder element switches, and less than 0.5 dB PDL with polarization diversity scheme which consisted of two switch matrices and fiber-type polarization beam splitters. Based on the switch performances described above, we discuss further improvement of switching performances.

  • Development of a 64 Gbps Si Photonic Crystal Modulator Open Access

    Yosuke HINAKURA  Hiroyuki ARAI  Toshihiko BABA  

     
    INVITED PAPER

      Pubricized:
    2020/06/15
      Vol:
    E103-C No:11
      Page(s):
    635-644

    A compact silicon photonic crystal waveguide (PCW) slow-light modulator is presented. The proposed modulator is capable of achieving a 64 Gbps bit-rate in a wide operating spectrum. The slow-light enhances the modulation efficiency in proportion to its group index ng. Two types of 200-µm-long PCW modulators are presented. These are low- and high-dispersion devices, which are implemented using a complementary metal-oxide-insulator process. The lattice-shifted PCW achieved low-dispersion slow-light and exhibited ng ≈ 20 with an operating spectrum Δλ ≈ 20 nm, in which the fluctuation of the extinction ratio is ±0.5 dB. The PCW device without the lattice shift exhibited high-dispersion, for which a large or small value of ng can be set on demand by changing the wavelength. It was found that for a large ng, the frequency response was degraded due to the electro-optic phase mismatch between the RF signals and slow-light even for such small-size modulators. Meander-line electrodes, which bypass and delay the RF signals to compensate for the phase mismatch, are proposed. A high cutoff frequency of 55 GHz was theoretically predicted, whereas the experimentally measured value was 38 GHz. A high-quality open eye pattern for a drive voltage of 1 V at 32 Gbps was observed. The clear eye pattern was maintained for 50-64 Gbps, although the drive voltage increased to 3.5-5.3 V. A preliminary operation of a 2-bits pulse amplitude modulation up to 100 Gbps was also attempted.

  • CCA-Secure Leakage-Resilient Identity-Based Encryption without q-Type Assumptions

    Toi TOMITA  Wakaha OGATA  Kaoru KUROSAWA  Ryo KUWAYAMA  

     
    PAPER-cryptography

      Vol:
    E103-A No:10
      Page(s):
    1157-1166

    In this paper, we propose a new leakage-resilient identity-based encryption (IBE) scheme that is secure against chosen-ciphertext attacks (CCA) in the bounded memory leakage model. The security of our scheme is based on the external k-Linear assumption. It is the first CCA-secure leakage-resilient IBE scheme which does not depend on q-type assumptions. The leakage rate 1/10 is achieved under the XDLIN assumption (k=2).

  • Silent Speech Interface Using Ultrasonic Doppler Sonar

    Ki-Seung LEE  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/05/20
      Vol:
    E103-D No:8
      Page(s):
    1875-1887

    Some non-acoustic modalities have the ability to reveal certain speech attributes that can be used for synthesizing speech signals without acoustic signals. This study validated the use of ultrasonic Doppler frequency shifts caused by facial movements to implement a silent speech interface system. A 40kHz ultrasonic beam is incident to a speaker's mouth region. The features derived from the demodulated received signals were used to estimate the speech parameters. A nonlinear regression approach was employed in this estimation where the relationship between ultrasonic features and corresponding speech is represented by deep neural networks (DNN). In this study, we investigated the discrepancies between the ultrasonic signals of audible and silent speech to validate the possibility for totally silent communication. Since reference speech signals are not available in silently mouthed ultrasonic signals, a nearest-neighbor search and alignment method was proposed, wherein alignment was achieved by determining the optimal pair of ultrasonic and audible features in the sense of a minimum mean square error criterion. The experimental results showed that the performance of the ultrasonic Doppler-based method was superior to that of EMG-based speech estimation, and was comparable to an image-based method.

  • The Evaluation of the Interface Properties of PdEr-Silicide on Si(100) Formed with TiN Encapsulating Layer and Dopant Segregation Process

    Rengie Mark D. MAILIG  Min Gee KIM  Shun-ichiro OHMI  

     
    PAPER-Electronic Materials

      Vol:
    E103-C No:6
      Page(s):
    286-292

    In this paper, the effects of the TiN encapsulating layer and the dopant segregation process on the interface properties and the Schottky barrier height reduction of PdEr-silicide/n-Si(100) were investigated. The results show that controlling the initial location of the boron dopants by adding the TiN encapsulating layer lowered the Schottky barrier height (SBH) for hole to 0.20 eV. Furthermore, the density of interface states (Dit) on the order of 1011eV-1cm-2 was obtained indicating that the dopant segregation process with TiN encapsulating layer effectively annihilated the interface states.

  • A Novel Technique to Suppress Multiple-Triggering Effect in Typical DTSCRs under ESD Stress Open Access

    Lizhong ZHANG  Yuan WANG  Yandong HE  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/11/29
      Vol:
    E103-C No:5
      Page(s):
    274-278

    This work reports a new technique to suppress the undesirable multiple-triggering effect in the typical diode triggered silicon controlled rectifier (DTSCR), which is frequently used as an ESD protection element in the advanced CMOS technologies. The technique is featured by inserting additional N-Well areas under the N+ region of intrinsic SCR, which helps to improve the substrate resistance. As a consequence, the delay of intrinsic SCR is reduced as the required triggering current is largely decreased and multiple-triggering related higher trigger voltage is removed. The novel DTSCR structures can alter the stacked diodes to achieve the precise trigger voltage to meet different ESD protection requirements. All explored DTSCR structures are fabricated in a 65-nm CMOS process. Transmission-line-pulsing (TLP) and Very-Fast-Transmission-line-pulsing (VF-TLP) test systems are adopted to confirm the validity of this technique and the test results accord well with our analysis.

  • Silicon Controlled Rectifier Based Partially Depleted SOI ESD Protection Device for High Voltage Application

    Yibo JIANG  Hui BI  Hui LI  Zhihao XU  Cheng SHI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/10/09
      Vol:
    E103-C No:4
      Page(s):
    191-193

    In partially depleted SOI (PD-SOI) technology, the SCR-based protection device is desired due to its relatively high robustness, but be restricted to use because of its inherent low holding voltage (Vh) and high triggering voltage (Vt1). In this paper, the body-tie side triggering diode inserting silicon controlled rectifier (BSTDISCR) is proposed and verified in 180 nm PD-SOI technology. Compared to the other devices in the same process and other related works, the BSTDISCR presents as a robust and latchup-immune PD-SOI ESD protection device, with appropriate Vt1 of 6.3 V, high Vh of 4.2 V, high normalized second breakdown current (It2), which indicates the ESD protection robustness, of 13.3 mA/µm, low normalized parasitic capacitance of 0.74 fF/µm.

  • Discrimination between Genuine and Cloned Gait Silhouette Videos via Autoencoder-Based Training Data Generation

    Yuki HIROSE  Kazuaki NAKAMURA  Naoko NITTA  Noboru BABAGUCHI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/09/06
      Vol:
    E102-D No:12
      Page(s):
    2535-2546

    Spoofing attacks are one of the biggest concerns for most biometric recognition systems. This will be also the case with silhouette-based gait recognition in the near future. So far, gait recognition has been fortunately out of the scope of spoofing attacks. However, it is becoming a real threat with the rapid growth and spread of deep neural network-based multimedia generation techniques, which will allow attackers to generate a fake video of gait silhouettes resembling a target person's walking motion. We refer to such computer-generated fake silhouettes as gait silhouette clones (GSCs). To deal with the future threat caused by GSCs, in this paper, we propose a supervised method for discriminating GSCs from genuine gait silhouettes (GGSs) that are observed from actual walking people. For training a good discriminator, it is important to collect training datasets of both GGSs and GSCs which do not differ from each other in any aspect other than genuineness. To this end, we propose to generate a training set of GSCs from GGSs by transforming them using multiple autoencoders. The generated GSCs are used together with their original GGSs for training the discriminator. In our experiments, the proposed method achieved the recognition accuracy of up to 94% for several test datasets, which demonstrates the effectiveness and the generality of the proposed method.

  • Large Size In-Cell Capacitive Touch Panel and Force Touch Development for Automotive Displays Open Access

    Naoki TAKADA  Chihiro TANAKA  Toshihiko TANAKA  Yuto KAKINOKI  Takayuki NAKANISHI  Naoshi GOTO  

     
    INVITED PAPER

      Vol:
    E102-C No:11
      Page(s):
    795-801

    We have developed the world's largest 16.7-inch hybrid in-cell touch panel. To realize the large sized in-cell touch panel, we applied a vertical Vcom system and low resistance sensor, which are JDI's original technologies. For glove touch function, we applied mutual bundled driving, which increases the signal intensity higher. The panel also has a low surface reflection, curved-shaped, and non-rectangular characteristics, which are particular requirements in the automotive market. The over 15-inch hybrid in-cell touch panel adheres to automotive quality requirements. We have also developed a force touch panel, which is a new human machine interface (HMI) based on a hybrid in-cell touch panel in automotive display. This study reports on the effect of the improvements on the in-plane variation of force touch and the value change of the force signal under different environment conditions. We also a introduce force touch implemented prototype.

  • Construction of Resilient Boolean and Vectorial Boolean Functions with High Nonlinearity

    Luyang LI  Dong ZHENG  Qinglan ZHAO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:10
      Page(s):
    1397-1401

    Boolean functions and vectorial Boolean functions are the most important components of stream ciphers. Their cryptographic properties are crucial to the security of the underlying ciphers. And how to construct such functions with good cryptographic properties is a nice problem that worth to be investigated. In this paper, using two small nonlinear functions with t-1 resiliency, we provide a method on constructing t-resilient n variables Boolean functions with strictly almost optimal nonlinearity >2n-1-2n/2 and optimal algebraic degree n-t-1. Based on the method, we give another construction so that a large class of resilient vectorial Boolean functions can be obtained. It is shown that the vectorial Boolean functions also have strictly almost optimal nonlinearity and optimal algebraic degree.

  • Suzaku: A Churn Resilient and Lookup-Efficient Key-Order Preserving Structured Overlay Network

    Kota ABE  Yuuichi TERANISHI  

     
    PAPER-Network

      Pubricized:
    2019/03/05
      Vol:
    E102-B No:9
      Page(s):
    1885-1894

    A key-order preserving structured overlay network is a class of structured overlay network that preserves, in its structure, the order of keys to support efficient range queries. This paper presents a novel key-order preserving structured overlay network “Suzaku”. Similar to the conventional Chord#, Suzaku uses a periodically updated finger table as a routing table, but extends its uni-directional finger table to bi-directional, which achieves ⌈log2 n⌉-1 maximum lookup hops in the converged state. Suzaku introduces active and passive bi-directional finger table update algorithms for node insertion and deletion. This method maintains good lookup performance (lookup hops increase nearly logarithmically against n) even in churn situations. As well as its good performance, the algorithms of Suzaku are simple and easy to implement. This paper describes the principles of Suzaku, followed by simulation evaluations, in which it showed better performance than the conventional networks, Chord# and Skip Graph.

  • Analytical Modeling of the Silicon Carbide (SiC) MOSFET during Switching Transition for EMI Investigation

    Yingzhe WU  Hui LI  Wenjie MA  Dingxin JIN  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E102-C No:9
      Page(s):
    646-657

    With the advantages of higher blocking voltage, higher operation temperature, fast-switching characteristics, and lower switching losses, the silicon carbide (SiC) MOSFET has attracted more attentions and become an available replacement of traditional silicon (Si) power semiconductor in applications. Despite of all the merits above, electromagnetic interference (EMI) issues will be induced consequently by the ultra-fast switching transitions of the SiC MOSFET. To quickly and precisely assess the switching behaviors of the SiC MOSFET for EMI investigation, an analytical model is proposed. This model has comprehensively considered most of the key factors, including parasitic inductances, non-linearity of the junction capacitors, negative feedback effect of Ls and Cgd shared by the power and the gate stage loops, non-linearity of the trans-conductance, and skin effect during voltage and current ringing stages, which will considerably affect the switching performance of the SiC MOSFET. Additionally, a finite-state machine (FSM) is especially utilized so as to analytically and intuitively describe the switching behaviors of the SiC MOSFET via Stateflow. Based on double pulse test (DPT), the effectiveness and correctness of the proposed model are validated through the comparison between the calculated and the measured waveforms during switching transitions. Besides, the model can appropriately depict the spectrum of the drain-source voltage of the MOSFET and is suitable for EMI investigation in applying of SiC devices.

21-40hit(368hit)