Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.
Izumi TSUNOKUNI Gen SATO Yusuke IKEDA Yasuhiro OIKAWA
This paper reports a spatial extrapolation of the sound field with a physics-informed neural network. We investigate the spatial extrapolation of the room impulse responses with physics-informed SIREN architecture. Furthermore, we proposed a noise-robust extrapolation method by introducing a tolerance term to the loss function.
Feng LIU Helin WANG Conggai LI Yanli XU
This letter proposes a scheme for the backward transmission of the propagation-delay based three-user X channel, which is reciprocal to the forward transmission. The given scheme successfully delivers 10 expected messages in 6 time-slots by cyclic interference alignment without loss of degrees of freedom, which supports efficient bidirectional transmission between the two ends of the three-user X channel.
Chen ZHONG Chegnyu WU Xiangyang LI Ao ZHAN Zhengqiang WANG
A novel temporal convolution network-gated recurrent unit (NTCN-GRU) algorithm is proposed for the greatest of constant false alarm rate (GO-CFAR) frequency hopping (FH) prediction, integrating GRU and Bayesian optimization (BO). GRU efficiently captures the semantic associations among long FH sequences, and mitigates the phenomenon of gradient vanishing or explosion. BO improves extracting data features by optimizing hyperparameters besides. Simulations demonstrate that the proposed algorithm effectively reduces the loss in the training process, greatly improves the FH prediction effect, and outperforms the existing FH sequence prediction model. The model runtime is also reduced by three-quarters compared with others FH sequence prediction models.
Youquan XIAN Lianghaojie ZHOU Jianyong JIANG Boyi WANG Hao HUO Peng LIU
In recent years, blockchain has been widely applied in the Internet of Things (IoT). Blockchain oracle, as a bridge for data communication between blockchain and off-chain, has also received significant attention. However, the numerous and heterogeneous devices in the IoT pose great challenges to the efficiency and security of data acquisition for oracles. We find that the matching relationship between data sources and oracle nodes greatly affects the efficiency and service quality of the entire oracle system. To address these issues, this paper proposes a distributed and efficient oracle solution tailored for the IoT, enabling fast acquisition of real-time off-chain data. Specifically, we first design a distributed oracle architecture that combines both Trusted Execution Environment (TEE) devices and ordinary devices to improve system scalability, considering the heterogeneity of IoT devices. Secondly, based on the trusted node information provided by TEE, we determine the matching relationship between nodes and data sources, assigning appropriate nodes for tasks to enhance system efficiency. Through simulation experiments, our proposed solution has been shown to effectively improve the efficiency and service quality of the system, reducing the average response time by approximately 9.92% compared to conventional approaches.
To improve the recognition rate of the end-to-end modulation recognition method based on deep learning, a modulation recognition method of communication signals based on a cascade network is proposed, which is composed of two networks: Stacked Denoising Auto Encoder (SDAE) network and DCELDNN (Dilated Convolution, ECA Mechanism, Long Short-Term Memory, Deep Neural Networks) network. SDAE network is used to denoise the data, reconstruct the input data through encoding and decoding, and extract deep information from the data. DCELDNN network is constructed based on the CLDNN (Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks) network. In the DCELDNN network, dilated convolution is used instead of normal convolution to enlarge the receptive field and extract signal features, the Efficient Channel Attention (ECA) mechanism is introduced to enhance the expression ability of the features, the feature vector information is integrated by a Global Average Pooling (GAP) layer, and signal features are extracted by the DCELDNN network efficiently. Finally, end-to-end classification recognition of communication signals is realized. The test results on the RadioML2018.01a dataset show that the average recognition accuracy of the proposed method reaches 63.1% at SNR of -10 to 15 dB, compared with CNN, LSTM, and CLDNN models, the recognition accuracy is improved by 25.8%, 12.3%, and 4.8% respectively at 10 dB SNR.
In this research, we investigated the digital/analog-operation utilizing ferroelectric nondoped HfO2 (FeND-HfO2) as a blocking layer (BL) in the Hf-based metal/oxide/nitride/oxide/Si (MONOS) nonvolatile memory (NVM), so called FeNOS NVM. The Al/HfN0.5/HfN1.1/HfO2/p-Si(100) FeNOS diodes realized small equivalent oxide thickness (EOT) of 4.5 nm with the density of interface states (Dit) of 5.3 × 1010 eV-1cm-2 which were suitable for high-speed and low-voltage operation. The flat-band voltage (VFB) was well controlled as 80-100 mV with the input pulses of ±3 V/100 ms controlled by the partial polarization of FeND-HfO2 BL at each 2-bit state operated by the charge injection with the input pulses of +8 V/1-100 ms.
Koji ABE Mikiya KUZUTANI Satoki FURUYA Jose A. PIEDRA-LORENZANA Takeshi HIZAWA Yasuhiko ISHIKAWA
A reduced dark leakage current, without degrading the near-infrared responsivity, is reported for a vertical pin structure of Ge photodiodes (PDs) on n+-Si substrate, which usually shows a leakage current higher than PDs on p+-Si. The peripheral/surface leakage, the dominant leakage in PDs on n+-Si, is significantly suppressed by globally implanting P+ in the i-Si cap layer protecting the fragile surface of i-Ge epitaxial layer before locally implanting B+/BF2+ for the top p+ region of the pin junction. The P+ implantation compensates free holes unintentionally induced due to the Fermi level pinning at the surface/interface of Ge. By preventing the hole conduction from the periphery to the top p+ region under a negative/reverse bias, a reduction in the leakage current of PDs on n+-Si is realized.
Jun FURUTA Shotaro SUGITANI Ryuichi NAKAJIMA Takafumi ITO Kazutoshi KOBAYASHI
Radiation-induced temporal errors become a significant issue for circuit reliability. We measured the pulse widths of radiation-induced single event transients (SETs) from pMOSFETs and nMOSFETs separately. Test results show that heavy-ion induced SET rates of nMOSFETs were twice as high as those of pMOSFETs and that neutron-induced SETs occurred only in nMOSFETs. It was confirmed that the SET distribution from inverter chains can be estimated using the SET distribution from pMOSFETs and nMOSFETs by considering the difference in load capacitance of the measurement circuits.
This article describes the idea of utilizing Attested Execution Secure Processors (AESPs) that fit into building a secure Self-Sovereign Identity (SSI) system satisfying Sybil-resistance under permissionless blockchains. Today’s circumstances requiring people to be more online have encouraged us to address digital identity preserving privacy. There is a momentum of research addressing SSI, and many researchers approach blockchain technology as a foundation. SSI brings natural persons various benefits such as owning controls; on the other side, digital identity systems in the real world require Sybil-resistance to comply with Anti-Money-Laundering (AML) and other needs. The main idea in our proposal is to utilize AESPs for three reasons: first is the use of attested execution capability along with tamper-resistance, which is a strong assumption; second is powerfulness and flexibility, allowing various open-source programs to be executed within a secure enclave, and the third is that equipping hardware-assisted security in mobile devices has become a norm. Rafael Pass et al.’s formal abstraction of AESPs and the ideal functionality $\color{brown}{\mathcal{G}_\mathtt{att}}$ enable us to formulate how hardware-assisted security works for secure digital identity systems preserving privacy under permissionless blockchains mathematically. Our proposal of the AESP-based SSI architecture and system protocols, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$, demonstrates the advantages of building a proper SSI system that satisfies the Sybil-resistant requirement. The protocols may eliminate the online distributed committee assumed in other research, such as CanDID, because of assuming AESPs; thus, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$ allows not to rely on multi-party computation (MPC), bringing drastic flexibility and efficiency compared with the existing SSI systems.
Arata KANEKO Htoo Htoo Sandi KYAW Kunihiro FUJIYOSHI Keiichi KANEKO
In this paper, we propose two algorithms, B-N2N and B-N2S, that solve the node-to-node and node-to-set disjoint paths problems in the bicube, respectively. We prove their correctness and that the time complexities of the B-N2N and B-N2S algorithms are O(n2) and O(n2 log n), respectively, if they are applied in an n-dimensional bicube with n ≥ 5. Also, we prove that the maximum lengths of the paths generated by B-N2N and B-N2S are both n + 2. Furthermore, we have shown that the algorithms can be applied in the locally twisted cube, too, with the same performance.
Watermarking methods require robustness against various attacks. Conventional watermarking methods use error-correcting codes or spread spectrum to correct watermarking errors. Errors can also be reduced by embedding the watermark into the frequency domain and by using SIFT feature points. If the type and strength of the attack can be estimated, the errors can be further reduced. There are several types of attacks, such as scaling, rotation, and cropping, and it is necessary to aim for robustness against all of them. Focusing on the scaling tolerance of watermarks, we propose a watermarking method using SIFT feature points and DFT, and introduce a pilot signal. The proposed method estimates the scaling rate using the pilot signal in the form of a grid. When a stego-image is scaled, the grid interval of the pilot signal also changes, and the scaling rate can be estimated from the amount of change. The accuracy of estimating the scaling rate by the proposed method was evaluated in terms of the relative error of the scaling rate. The results show that the proposed method could reduce errors in the watermark by using the estimated scaling rate.
Chunbo LIU Liyin WANG Zhikai ZHANG Chunmiao XIANG Zhaojun GU Zhi WANG Shuang WANG
Aiming at the problem that large-scale traffic data lack labels and take too long for feature extraction in network intrusion detection, an unsupervised intrusion detection method ACOPOD based on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier Detection) algorithm is proposed. This method uses the Adam asymmetric autoencoder with a reduced structure to extract features from the network data and reduce the data dimension. Then, based on the Copula function, the joint probability distribution of all features is represented by the edge probability of each feature, and then the outliers are detected. Experiments on the published NSL-KDD dataset with six other traditional unsupervised anomaly detection methods show that ACOPOD achieves higher precision and has obvious advantages in running speed. Experiments on the real civil aviation air traffic management network dataset further prove that the method can effectively detect intrusion behavior in the real network environment, and the results are interpretable and helpful for attack source tracing.
Zhishuo ZHANG Chengxiang TAN Xueyan ZHAO Min YANG
Entity alignment (EA) is a crucial task for integrating cross-lingual and cross-domain knowledge graphs (KGs), which aims to discover entities referring to the same real-world object from different KGs. Most existing embedding-based methods generate aligning entity representation by mining the relevance of triple elements, paying little attention to triple indivisibility and entity role diversity. In this paper, a novel framework named TTEA - Type-enhanced Ensemble Triple Representation via Triple-aware Attention for Cross-lingual Entity Alignment is proposed to overcome the above shortcomings from the perspective of ensemble triple representation considering triple specificity and diversity features of entity role. Specifically, the ensemble triple representation is derived by regarding relation as information carrier between semantic and type spaces, and hence the noise influence during spatial transformation and information propagation can be smoothly controlled via specificity-aware triple attention. Moreover, the role diversity of triple elements is modeled via triple-aware entity enhancement in TTEA for EA-oriented entity representation. Extensive experiments on three real-world cross-lingual datasets demonstrate that our framework makes comparative results.
Qi LIU Bo WANG Shihan TAN Shurong ZOU Wenyi GE
For flight simulators, it is crucial to create three-dimensional terrain using clear remote sensing images. However, due to haze and other contributing variables, the obtained remote sensing images typically have low contrast and blurry features. In order to build a flight simulator visual system, we propose a deep learning-based dehaze model for remote sensing images dehazing. An encoder-decoder architecture is proposed that consists of a multiscale fusion module and a gated large kernel convolutional attention module. This architecture can fuse multi-resolution global and local semantic features and can adaptively extract image features under complex terrain. The experimental results demonstrate that, with good generality and application, the model outperforms existing comparison techniques and achieves high-confidence dehazing in remote sensing images with a variety of haze concentrations, multi-complex terrains, and multi-spatial resolutions.
Yuhao LIU Zhenzhong CHU Lifei WEI
In the realm of Single Image Super-Resolution (SISR), the meticulously crafted Nonlocal Sparse Attention-based block demonstrates its efficacy in noise reduction and computational cost reduction for nonlocal (global) features. However, it neglect the traditional Convolutional-based block, which proficient in handling local features. Thus, merging both the Nonlocal Sparse Attention-based block and the Convolutional-based block to concurrently manage local and nonlocal features poses a significant challenge. To tackle the aforementioned issues, this paper introduces the Channel Contrastive Attention-based Local-Nonlocal Mutual block (CCLN) for Super-Resolution (SR). (1) We introduce the CCLN block, encompassing the Local Sparse Convolutional-based block for local features and the Nonlocal Sparse Attention-based network block for nonlocal features. (2) We introduce Channel Contrastive Attention (CCA) blocks, incorporating Sparse Aggregation into Convolutional-based blocks. Additionally, we introduce a robust framework to fuse these two blocks, ensuring that each branch operates according to its respective strengths. (3) The CCLN block can seamlessly integrate into established network backbones like the Enhanced Deep Super-Resolution network (EDSR), achieving in the Channel Attention based Local-Nonlocal Mutual Network (CCLNN). Experimental results show that our CCLNN effectively leverages both local and nonlocal features, outperforming other state-of-the-art algorithms.
Jia-ji JIANG Hai-bin WAN Hong-min SUN Tuan-fa QIN Zheng-qiang WANG
In this paper, the Towards High Performance Voxel-based 3D Object Detection (Voxel-RCNN) three-dimensional (3D) point cloud object detection model is used as the benchmark network. Aiming at the problems existing in the current mainstream 3D point cloud voxelization methods, such as the backbone and the lack of feature expression ability under the bird’s-eye view (BEV), a high-performance voxel-based 3D object detection network (Reinforced Voxel-RCNN) is proposed. Firstly, a 3D feature extraction module based on the integration of inverted residual convolutional network and weight normalization is designed on the 3D backbone. This module can not only well retain more point cloud feature information, enhance the information interaction between convolutional layers, but also improve the feature extraction ability of the backbone network. Secondly, a spatial feature-semantic fusion module based on spatial and channel attention is proposed from a BEV perspective. The mixed use of channel features and semantic features further improves the network’s ability to express point cloud features. In the comparison of experimental results on the public dataset KITTI, the experimental results of this paper are better than many voxel-based methods. Compared with the baseline network, the 3D average accuracy and BEV average accuracy on the three categories of Car, Cyclist, and Pedestrians are improved. Among them, in the 3D average accuracy, the improvement rate of Car category is 0.23%, Cyclist is 0.78%, and Pedestrians is 2.08%. In the context of BEV average accuracy, enhancements are observed: 0.32% for the Car category, 0.99% for Cyclist, and 2.38% for Pedestrians. The findings demonstrate that the algorithm enhancement introduced in this study effectively enhances the accuracy of target category detection.
We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.
Yi XIONG Senanayake THILAK Yu YONEZAWA Jun IMAOKA Masayoshi YAMAMOTO
This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.
Yusaku HIRAI Toshimasa MATSUOKA Takatsugu KAMATA Sadahiro TANI Takao ONOYE
This paper presents a multi-channel biomedical sensor system with system-level chopping and stochastic analog-to-digital (A/D) conversion techniques. The system-level chopping technique extends the input-signal bandwidth and reduces the interchannel crosstalk caused by multiplexing. The system-level chopping can replace an analog low-pass filter (LPF) with a digital filter and can reduce its area occupation. The stochastic A/D conversion technique realizes power-efficient resolution enhancement. A novel auto-calibration technique is also proposed for the stochastic A/D conversion technique. The proposed system includes a prototype analog front-end (AFE) IC fabricated using a 130 nm CMOS process. The fabricated AFE IC improved its interchannel crosstalk by 40 dB compared with the conventional analog chopping architecture. The AFE IC achieved SNDR of 62.9 dB at a sampling rate of 31.25 kSps while consuming 9.6 μW from a 1.2 V power supply. The proposed resolution enhancement technique improved the measured SNDR by 4.5 dB.