The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Si(16348hit)

41-60hit(16348hit)

  • Enhanced Radar Emitter Recognition with Virtual Adversarial Training: A Semi-Supervised Framework Open Access

    Ziqin FENG  Hong WAN  Guan GUI  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2024/05/15
      Vol:
    E107-A No:9
      Page(s):
    1534-1541

    Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.

  • Spatial Extrapolation of Early Room Impulse Responses with Noise-Robust Physics-Informed Neural Network Open Access

    Izumi TSUNOKUNI  Gen SATO  Yusuke IKEDA  Yasuhiro OIKAWA  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2024/04/08
      Vol:
    E107-A No:9
      Page(s):
    1556-1560

    This paper reports a spatial extrapolation of the sound field with a physics-informed neural network. We investigate the spatial extrapolation of the room impulse responses with physics-informed SIREN architecture. Furthermore, we proposed a noise-robust extrapolation method by introducing a tolerance term to the loss function.

  • A Feasible Scheme for the Backward Transmission in the Three-User X Channel with Reciprocal Propagation Delay Open Access

    Feng LIU  Helin WANG  Conggai LI  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2024/04/05
      Vol:
    E107-A No:9
      Page(s):
    1575-1576

    This letter proposes a scheme for the backward transmission of the propagation-delay based three-user X channel, which is reciprocal to the forward transmission. The given scheme successfully delivers 10 expected messages in 6 time-slots by cyclic interference alignment without loss of degrees of freedom, which supports efficient bidirectional transmission between the two ends of the three-user X channel.

  • A Novel Frequency Hopping Prediction Model Based on TCN-GRU Open Access

    Chen ZHONG  Chegnyu WU  Xiangyang LI  Ao ZHAN  Zhengqiang WANG  

     
    LETTER-Intelligent Transport System

      Pubricized:
    2024/04/19
      Vol:
    E107-A No:9
      Page(s):
    1577-1581

    A novel temporal convolution network-gated recurrent unit (NTCN-GRU) algorithm is proposed for the greatest of constant false alarm rate (GO-CFAR) frequency hopping (FH) prediction, integrating GRU and Bayesian optimization (BO). GRU efficiently captures the semantic associations among long FH sequences, and mitigates the phenomenon of gradient vanishing or explosion. BO improves extracting data features by optimizing hyperparameters besides. Simulations demonstrate that the proposed algorithm effectively reduces the loss in the training process, greatly improves the FH prediction effect, and outperforms the existing FH sequence prediction model. The model runtime is also reduced by three-quarters compared with others FH sequence prediction models.

  • A Distributed Efficient Blockchain Oracle Scheme for Internet of Things Open Access

    Youquan XIAN  Lianghaojie ZHOU  Jianyong JIANG  Boyi WANG  Hao HUO  Peng LIU  

     
    PAPER-Network System

      Vol:
    E107-B No:9
      Page(s):
    573-582

    In recent years, blockchain has been widely applied in the Internet of Things (IoT). Blockchain oracle, as a bridge for data communication between blockchain and off-chain, has also received significant attention. However, the numerous and heterogeneous devices in the IoT pose great challenges to the efficiency and security of data acquisition for oracles. We find that the matching relationship between data sources and oracle nodes greatly affects the efficiency and service quality of the entire oracle system. To address these issues, this paper proposes a distributed and efficient oracle solution tailored for the IoT, enabling fast acquisition of real-time off-chain data. Specifically, we first design a distributed oracle architecture that combines both Trusted Execution Environment (TEE) devices and ordinary devices to improve system scalability, considering the heterogeneity of IoT devices. Secondly, based on the trusted node information provided by TEE, we determine the matching relationship between nodes and data sources, assigning appropriate nodes for tasks to enhance system efficiency. Through simulation experiments, our proposed solution has been shown to effectively improve the efficiency and service quality of the system, reducing the average response time by approximately 9.92% compared to conventional approaches.

  • Modulation Recognition of Communication Signals Based on Cascade Network Open Access

    Yanli HOU  Chunxiao LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:9
      Page(s):
    620-626

    To improve the recognition rate of the end-to-end modulation recognition method based on deep learning, a modulation recognition method of communication signals based on a cascade network is proposed, which is composed of two networks: Stacked Denoising Auto Encoder (SDAE) network and DCELDNN (Dilated Convolution, ECA Mechanism, Long Short-Term Memory, Deep Neural Networks) network. SDAE network is used to denoise the data, reconstruct the input data through encoding and decoding, and extract deep information from the data. DCELDNN network is constructed based on the CLDNN (Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks) network. In the DCELDNN network, dilated convolution is used instead of normal convolution to enlarge the receptive field and extract signal features, the Efficient Channel Attention (ECA) mechanism is introduced to enhance the expression ability of the features, the feature vector information is integrated by a Global Average Pooling (GAP) layer, and signal features are extracted by the DCELDNN network efficiently. Finally, end-to-end classification recognition of communication signals is realized. The test results on the RadioML2018.01a dataset show that the average recognition accuracy of the proposed method reaches 63.1% at SNR of -10 to 15 dB, compared with CNN, LSTM, and CLDNN models, the recognition accuracy is improved by 25.8%, 12.3%, and 4.8% respectively at 10 dB SNR.

  • Digital/Analog-Operation of Hf-Based FeNOS Nonvolatile Memory Utilizing Ferroelectric Nondoped HfO2 Blocking Layer Open Access

    Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2024/06/03
      Vol:
    E107-C No:9
      Page(s):
    232-236

    In this research, we investigated the digital/analog-operation utilizing ferroelectric nondoped HfO2 (FeND-HfO2) as a blocking layer (BL) in the Hf-based metal/oxide/nitride/oxide/Si (MONOS) nonvolatile memory (NVM), so called FeNOS NVM. The Al/HfN0.5/HfN1.1/HfO2/p-Si(100) FeNOS diodes realized small equivalent oxide thickness (EOT) of 4.5 nm with the density of interface states (Dit) of 5.3 × 1010 eV-1cm-2 which were suitable for high-speed and low-voltage operation. The flat-band voltage (VFB) was well controlled as 80-100 mV with the input pulses of ±3 V/100 ms controlled by the partial polarization of FeND-HfO2 BL at each 2-bit state operated by the charge injection with the input pulses of +8 V/1-100 ms.

  • Reduced Peripheral Leakage Current in Pin Photodetectors of Ge on n+-Si by P+ Implantation to Compensate Surface Holes Open Access

    Koji ABE  Mikiya KUZUTANI  Satoki FURUYA  Jose A. PIEDRA-LORENZANA  Takeshi HIZAWA  Yasuhiko ISHIKAWA  

     
    BRIEF PAPER

      Pubricized:
    2024/05/15
      Vol:
    E107-C No:9
      Page(s):
    237-240

    A reduced dark leakage current, without degrading the near-infrared responsivity, is reported for a vertical pin structure of Ge photodiodes (PDs) on n+-Si substrate, which usually shows a leakage current higher than PDs on p+-Si. The peripheral/surface leakage, the dominant leakage in PDs on n+-Si, is significantly suppressed by globally implanting P+ in the i-Si cap layer protecting the fragile surface of i-Ge epitaxial layer before locally implanting B+/BF2+ for the top p+ region of the pin junction. The P+ implantation compensates free holes unintentionally induced due to the Fermi level pinning at the surface/interface of Ge. By preventing the hole conduction from the periphery to the top p+ region under a negative/reverse bias, a reduction in the leakage current of PDs on n+-Si is realized.

  • Measuring SET Pulse Widths in pMOSFETs and nMOSFETs Separately by Heavy Ion and Neutron Irradiation Open Access

    Jun FURUTA  Shotaro SUGITANI  Ryuichi NAKAJIMA  Takafumi ITO  Kazutoshi KOBAYASHI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2024/04/10
      Vol:
    E107-C No:9
      Page(s):
    255-262

    Radiation-induced temporal errors become a significant issue for circuit reliability. We measured the pulse widths of radiation-induced single event transients (SETs) from pMOSFETs and nMOSFETs separately. Test results show that heavy-ion induced SET rates of nMOSFETs were twice as high as those of pMOSFETs and that neutron-induced SETs occurred only in nMOSFETs. It was confirmed that the SET distribution from inverter chains can be estimated using the SET distribution from pMOSFETs and nMOSFETs by considering the difference in load capacitance of the measurement circuits.

  • Permissionless Blockchain-Based Sybil-Resistant Self-Sovereign Identity Utilizing Attested Execution Secure Processors Open Access

    Koichi MORIYAMA  Akira OTSUKA  

     
    INVITED PAPER

      Pubricized:
    2024/04/15
      Vol:
    E107-D No:9
      Page(s):
    1112-1122

    This article describes the idea of utilizing Attested Execution Secure Processors (AESPs) that fit into building a secure Self-Sovereign Identity (SSI) system satisfying Sybil-resistance under permissionless blockchains. Today’s circumstances requiring people to be more online have encouraged us to address digital identity preserving privacy. There is a momentum of research addressing SSI, and many researchers approach blockchain technology as a foundation. SSI brings natural persons various benefits such as owning controls; on the other side, digital identity systems in the real world require Sybil-resistance to comply with Anti-Money-Laundering (AML) and other needs. The main idea in our proposal is to utilize AESPs for three reasons: first is the use of attested execution capability along with tamper-resistance, which is a strong assumption; second is powerfulness and flexibility, allowing various open-source programs to be executed within a secure enclave, and the third is that equipping hardware-assisted security in mobile devices has become a norm. Rafael Pass et al.’s formal abstraction of AESPs and the ideal functionality $\color{brown}{\mathcal{G}_\mathtt{att}}$ enable us to formulate how hardware-assisted security works for secure digital identity systems preserving privacy under permissionless blockchains mathematically. Our proposal of the AESP-based SSI architecture and system protocols, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$, demonstrates the advantages of building a proper SSI system that satisfies the Sybil-resistant requirement. The protocols may eliminate the online distributed committee assumed in other research, such as CanDID, because of assuming AESPs; thus, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$ allows not to rely on multi-party computation (MPC), bringing drastic flexibility and efficiency compared with the existing SSI systems.

  • Node-to-Node and Node-to-Set Disjoint Paths Problems in Bicubes Open Access

    Arata KANEKO  Htoo Htoo Sandi KYAW  Kunihiro FUJIYOSHI  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/17
      Vol:
    E107-D No:9
      Page(s):
    1133-1139

    In this paper, we propose two algorithms, B-N2N and B-N2S, that solve the node-to-node and node-to-set disjoint paths problems in the bicube, respectively. We prove their correctness and that the time complexities of the B-N2N and B-N2S algorithms are O(n2) and O(n2 log n), respectively, if they are applied in an n-dimensional bicube with n ≥ 5. Also, we prove that the maximum lengths of the paths generated by B-N2N and B-N2S are both n + 2. Furthermore, we have shown that the algorithms can be applied in the locally twisted cube, too, with the same performance.

  • Watermarking Method with Scaling Rate Estimation Using Pilot Signal Open Access

    Rinka KAWANO  Masaki KAWAMURA  

     
    PAPER-Information Network

      Pubricized:
    2024/05/22
      Vol:
    E107-D No:9
      Page(s):
    1151-1160

    Watermarking methods require robustness against various attacks. Conventional watermarking methods use error-correcting codes or spread spectrum to correct watermarking errors. Errors can also be reduced by embedding the watermark into the frequency domain and by using SIFT feature points. If the type and strength of the attack can be estimated, the errors can be further reduced. There are several types of attacks, such as scaling, rotation, and cropping, and it is necessary to aim for robustness against all of them. Focusing on the scaling tolerance of watermarks, we propose a watermarking method using SIFT feature points and DFT, and introduce a pilot signal. The proposed method estimates the scaling rate using the pilot signal in the form of a grid. When a stego-image is scaled, the grid interval of the pilot signal also changes, and the scaling rate can be estimated from the amount of change. The accuracy of estimating the scaling rate by the proposed method was evaluated in terms of the relative error of the scaling rate. The results show that the proposed method could reduce errors in the watermark by using the estimated scaling rate.

  • Unsupervised Intrusion Detection Based on Asymmetric Auto-Encoder Feature Extraction Open Access

    Chunbo LIU  Liyin WANG  Zhikai ZHANG  Chunmiao XIANG  Zhaojun GU  Zhi WANG  Shuang WANG  

     
    PAPER-Information Network

      Pubricized:
    2024/04/25
      Vol:
    E107-D No:9
      Page(s):
    1161-1173

    Aiming at the problem that large-scale traffic data lack labels and take too long for feature extraction in network intrusion detection, an unsupervised intrusion detection method ACOPOD based on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier Detection) algorithm is proposed. This method uses the Adam asymmetric autoencoder with a reduced structure to extract features from the network data and reduce the data dimension. Then, based on the Copula function, the joint probability distribution of all features is represented by the edge probability of each feature, and then the outliers are detected. Experiments on the published NSL-KDD dataset with six other traditional unsupervised anomaly detection methods show that ACOPOD achieves higher precision and has obvious advantages in running speed. Experiments on the real civil aviation air traffic management network dataset further prove that the method can effectively detect intrusion behavior in the real network environment, and the results are interpretable and helpful for attack source tracing.

  • Type-Enhanced Ensemble Triple Representation via Triple-Aware Attention for Cross-Lingual Entity Alignment Open Access

    Zhishuo ZHANG  Chengxiang TAN  Xueyan ZHAO  Min YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/05/22
      Vol:
    E107-D No:9
      Page(s):
    1182-1191

    Entity alignment (EA) is a crucial task for integrating cross-lingual and cross-domain knowledge graphs (KGs), which aims to discover entities referring to the same real-world object from different KGs. Most existing embedding-based methods generate aligning entity representation by mining the relevance of triple elements, paying little attention to triple indivisibility and entity role diversity. In this paper, a novel framework named TTEA - Type-enhanced Ensemble Triple Representation via Triple-aware Attention for Cross-lingual Entity Alignment is proposed to overcome the above shortcomings from the perspective of ensemble triple representation considering triple specificity and diversity features of entity role. Specifically, the ensemble triple representation is derived by regarding relation as information carrier between semantic and type spaces, and hence the noise influence during spatial transformation and information propagation can be smoothly controlled via specificity-aware triple attention. Moreover, the role diversity of triple elements is modeled via triple-aware entity enhancement in TTEA for EA-oriented entity representation. Extensive experiments on three real-world cross-lingual datasets demonstrate that our framework makes comparative results.

  • Remote Sensing Image Dehazing Using Multi-Scale Gated Attention for Flight Simulator Open Access

    Qi LIU  Bo WANG  Shihan TAN  Shurong ZOU  Wenyi GE  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:9
      Page(s):
    1206-1218

    For flight simulators, it is crucial to create three-dimensional terrain using clear remote sensing images. However, due to haze and other contributing variables, the obtained remote sensing images typically have low contrast and blurry features. In order to build a flight simulator visual system, we propose a deep learning-based dehaze model for remote sensing images dehazing. An encoder-decoder architecture is proposed that consists of a multiscale fusion module and a gated large kernel convolutional attention module. This architecture can fuse multi-resolution global and local semantic features and can adaptively extract image features under complex terrain. The experimental results demonstrate that, with good generality and application, the model outperforms existing comparison techniques and achieves high-confidence dehazing in remote sensing images with a variety of haze concentrations, multi-complex terrains, and multi-spatial resolutions.

  • A Channel Contrastive Attention-Based Local-Nonlocal Mutual Block on Super-Resolution Open Access

    Yuhao LIU  Zhenzhong CHU  Lifei WEI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2024/04/23
      Vol:
    E107-D No:9
      Page(s):
    1219-1227

    In the realm of Single Image Super-Resolution (SISR), the meticulously crafted Nonlocal Sparse Attention-based block demonstrates its efficacy in noise reduction and computational cost reduction for nonlocal (global) features. However, it neglect the traditional Convolutional-based block, which proficient in handling local features. Thus, merging both the Nonlocal Sparse Attention-based block and the Convolutional-based block to concurrently manage local and nonlocal features poses a significant challenge. To tackle the aforementioned issues, this paper introduces the Channel Contrastive Attention-based Local-Nonlocal Mutual block (CCLN) for Super-Resolution (SR). (1) We introduce the CCLN block, encompassing the Local Sparse Convolutional-based block for local features and the Nonlocal Sparse Attention-based network block for nonlocal features. (2) We introduce Channel Contrastive Attention (CCA) blocks, incorporating Sparse Aggregation into Convolutional-based blocks. Additionally, we introduce a robust framework to fuse these two blocks, ensuring that each branch operates according to its respective strengths. (3) The CCLN block can seamlessly integrate into established network backbones like the Enhanced Deep Super-Resolution network (EDSR), achieving in the Channel Attention based Local-Nonlocal Mutual Network (CCLNN). Experimental results show that our CCLNN effectively leverages both local and nonlocal features, outperforming other state-of-the-art algorithms.

  • Reinforced Voxel-RCNN: An Efficient 3D Object Detection Method Based on Feature Aggregation Open Access

    Jia-ji JIANG  Hai-bin WAN  Hong-min SUN  Tuan-fa QIN  Zheng-qiang WANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/04/24
      Vol:
    E107-D No:9
      Page(s):
    1228-1238

    In this paper, the Towards High Performance Voxel-based 3D Object Detection (Voxel-RCNN) three-dimensional (3D) point cloud object detection model is used as the benchmark network. Aiming at the problems existing in the current mainstream 3D point cloud voxelization methods, such as the backbone and the lack of feature expression ability under the bird’s-eye view (BEV), a high-performance voxel-based 3D object detection network (Reinforced Voxel-RCNN) is proposed. Firstly, a 3D feature extraction module based on the integration of inverted residual convolutional network and weight normalization is designed on the 3D backbone. This module can not only well retain more point cloud feature information, enhance the information interaction between convolutional layers, but also improve the feature extraction ability of the backbone network. Secondly, a spatial feature-semantic fusion module based on spatial and channel attention is proposed from a BEV perspective. The mixed use of channel features and semantic features further improves the network’s ability to express point cloud features. In the comparison of experimental results on the public dataset KITTI, the experimental results of this paper are better than many voxel-based methods. Compared with the baseline network, the 3D average accuracy and BEV average accuracy on the three categories of Car, Cyclist, and Pedestrians are improved. Among them, in the 3D average accuracy, the improvement rate of Car category is 0.23%, Cyclist is 0.78%, and Pedestrians is 2.08%. In the context of BEV average accuracy, enhancements are observed: 0.32% for the Car category, 0.99% for Cyclist, and 2.38% for Pedestrians. The findings demonstrate that the algorithm enhancement introduced in this study effectively enhances the accuracy of target category detection.

  • Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise Open Access

    Yoon Hak KIM  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:9
      Page(s):
    1274-1277

    We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.

  • Analytical Model of Maximum Operating Frequency of Class-D ZVS Inverter with Linearized Parasitic Capacitance and any Duty Ratio Open Access

    Yi XIONG  Senanayake THILAK  Yu YONEZAWA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Circuit Theory

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:8
      Page(s):
    1115-1126

    This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.

  • A Multi-Channel Biomedical Sensor System with System-Level Chopping and Stochastic A/D Conversion Open Access

    Yusaku HIRAI  Toshimasa MATSUOKA  Takatsugu KAMATA  Sadahiro TANI  Takao ONOYE  

     
    PAPER-Circuit Theory

      Pubricized:
    2024/02/09
      Vol:
    E107-A No:8
      Page(s):
    1127-1138

    This paper presents a multi-channel biomedical sensor system with system-level chopping and stochastic analog-to-digital (A/D) conversion techniques. The system-level chopping technique extends the input-signal bandwidth and reduces the interchannel crosstalk caused by multiplexing. The system-level chopping can replace an analog low-pass filter (LPF) with a digital filter and can reduce its area occupation. The stochastic A/D conversion technique realizes power-efficient resolution enhancement. A novel auto-calibration technique is also proposed for the stochastic A/D conversion technique. The proposed system includes a prototype analog front-end (AFE) IC fabricated using a 130 nm CMOS process. The fabricated AFE IC improved its interchannel crosstalk by 40 dB compared with the conventional analog chopping architecture. The AFE IC achieved SNDR of 62.9 dB at a sampling rate of 31.25 kSps while consuming 9.6 μW from a 1.2 V power supply. The proposed resolution enhancement technique improved the measured SNDR by 4.5 dB.

41-60hit(16348hit)