The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

8461-8480hit(21534hit)

  • An RSA-Based Leakage-Resilient Authenticated Key Exchange Protocol Secure against Replacement Attacks, and Its Extensions

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1086-1101

    Secure channels can be realized by an authenticated key exchange (AKE) protocol that generates authenticated session keys between the involving parties. In, Shin et al., proposed a new kind of AKE (RSA-AKE) protocol whose goal is to provide high efficiency and security against leakage of stored secrets as much as possible. Let us consider more powerful attacks where an adversary completely controls the communications and the stored secrets (the latter is denoted by "replacement" attacks). In this paper, we first show that the RSA-AKE protocol is no longer secure against such an adversary. The main contributions of this paper are as follows: (1) we propose an RSA-based leakage-resilient AKE (RSA-AKE2) protocol that is secure against active attacks as well as replacement attacks; (2) we prove that the RSA-AKE2 protocol is secure against replacement attacks based on the number theory results; (3) we show that it is provably secure in the random oracle model, by showing the reduction to the RSA one-wayness, under an extended model that covers active attacks and replacement attacks; (4) in terms of efficiency, the RSA-AKE2 protocol is comparable to in the sense that the client needs to compute only one modular multiplication with pre-computation; and (5) we also discuss about extensions of the RSA-AKE2 protocol for several security properties (i.e., synchronization of stored secrets, privacy of client and solution to server compromise-impersonation attacks).

  • Evaluation of Reliable Multicast Delivery in Base Station Diversity Systems

    Katsuhiro NAITO  Kazuo MORI  Hideo KOBAYASHI  

     
    LETTER-Internet

      Vol:
    E93-B No:6
      Page(s):
    1615-1619

    This paper proposes a multicast delivery system using base station diversity for cellular systems. Conventional works utilize single wireless link communication to achieve reliable multicast. In cellular systems, received signal intensity declines in cell edge areas. Therefore, wireless terminals in cell edge areas suffer from many transmission errors due to low received signal intensity. Additionally, multi-path fading also causes dynamic fluctuation of received signal intensity. Wireless terminals also suffer from transmission errors due to the multi-path fading. The proposed system utilizes multiple wireless link communication to improve transmission performance. Each wireless terminal communicates with some neighbor base stations, and combines frame information which arrives from different base stations. Numerical results demonstrate that the proposed system can achieve multicast data delivery with a short transmission period and can reduce consumed wireless resource due to retransmission.

  • A De-Embedding Method Using Different-Length Transmission Lines for mm-Wave CMOS Device Modeling

    Naoki TAKAYAMA  Kota MATSUSHITA  Shogo ITO  Ning LI  Keigo BUNSEN  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    812-819

    This paper proposes a de-embedding method for on-chip S-parameter measurements at mm-wave frequency. The proposed method uses only two transmission lines with different length. In the proposed method, a parasitic-component model extracted from two transmission lines can be used for de-embedding for other-type DUTs like transistor, capacitor, inductor, etc. The experimental results show that the error in characteristic impedance between the different-length transmission lines is less than 0.7% above 40 GHz. The extracted pad model is also shown.

  • Sole Inversion Precomputation for Elliptic Curve Scalar Multiplications

    Erik DAHMEN  Katsuyuki OKEYA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1140-1147

    This paper presents a new approach to precompute points [3]P, [5]P,..., [2k-1]P, for some k ≥ 2 on an elliptic curve over Fp. Those points are required for the efficient evaluation of a scalar multiplication, the most important operation in elliptic curve cryptography. The proposed method precomputes the points in affine coordinates and needs only one single field inversion for the computation. The new method is superior to all known methods that also use one field inversion, if the required memory is taken into consideration. Compared to methods that require several field inversions for the precomputation, the proposed method is faster for a broad range of ratios of field inversions and field multiplications. The proposed method benefits especially from ratios as they occur on smart cards.

  • Fast Interior Point Method for MIMO Transmit Power Optimization with Per-Antenna Power Constraints

    Yusuke OHWATARI  Anass BENJEBBOUR  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1484-1493

    For multiple-input multiple-output (MIMO) precoded transmission that has individual constraints on the maximum power of each transmit antenna or a subset of transmit antennas, the transmit power optimization problem is a non-linear convex optimization problem with a high level of computational complexity. In this paper, assuming the use of the interior point method (IPM) to solve this problem, we propose two efficient techniques that reduce the computational complexity of the IPM by appropriately setting its parameters. Based on computer simulation, the achieved reductions in the level of the computational complexity are evaluated using the proposed techniques for both the fairness and the sum-rate maximization criteria assuming i.i.d Rayleigh fading MIMO channels and block diagonalization zero-forcing as a multi-user MIMO (MU-MIMO) precoder.

  • Detecting New Words from Chinese Text Using Latent Semi-CRF Models

    Xiao SUN  Degen HUANG  Fuji REN  

     
    PAPER-Natural Language Processing

      Vol:
    E93-D No:6
      Page(s):
    1386-1393

    Chinese new words and their part-of-speech (POS) are particularly problematic in Chinese natural language processing. With the fast development of internet and information technology, it is impossible to get a complete system dictionary for Chinese natural language processing, as new words out of the basic system dictionary are always being created. A latent semi-CRF model, which combines the strengths of LDCRF (Latent-Dynamic Conditional Random Field) and semi-CRF, is proposed to detect the new words together with their POS synchronously regardless of the types of the new words from the Chinese text without being pre-segmented. Unlike the original semi-CRF, the LDCRF is applied to generate the candidate entities for training and testing the latent semi-CRF, which accelerates the training speed and decreases the computation cost. The complexity of the latent semi-CRF could be further adjusted by tuning the number of hidden variables in LDCRF and the number of the candidate entities from the Nbest outputs of the LDCRF. A new-words-generating framework is proposed for model training and testing, under which the definitions and distributions of the new words conform to the ones existing in real text. Specific features called "Global Fragment Information" for new word detection and POS tagging are adopted in the model training and testing. The experimental results show that the proposed method is capable of detecting even low frequency new words together with their POS tags. The proposed model is found to be performing competitively with the state-of-the-art models presented.

  • Numerical Throughput Analysis on Channel Interference in IEEE 802.15.3c WPAN Based on Hybrid Multiple Access of CSMA/CA-TDMA

    Chang-Woo PYO  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1502-1514

    This study focuses on system throughput by taking into account the channel interference in IEEE 802.15.3c WPAN, which is based on the hybrid multiple access of CSMA/CA and TDMA, namely CSMA/CA-TDMA. To study the system throughput, we construct a novel analytical model by taking into consideration the channel interference caused by the hidden networks in CSMA/CA-TDMA. The obtained results show that the system throughput achieved by TDMA is highly affected by frame transmission in CSMA/CA. Furthermore, we show that channel interference, which causes a degradation in the system throughput, is a very significant problem in the IEEE 802.15.3c WPAN.

  • Design and Optimization of Transparency-Based TAM for SoC Test

    Tomokazu YONEDA  Akiko SHUTO  Hideyuki ICHIHARA  Tomoo INOUE  Hideo FUJIWARA  

     
    PAPER-Information Network

      Vol:
    E93-D No:6
      Page(s):
    1549-1559

    We present a graph model and an ILP model for TAM design for transparency-based SoC testing. The proposed method is an extension of a previous work proposed by Chakrabarty with respect to the following three points: (1) constraint relaxation by considering test data flow for each core separately, (2) optimization of the cost for transparency as well as the cost for additional interconnect area simultaneously and (3) consideration of additional bypass paths. Therefore, the proposed ILP model can represent various problems including the same problem as the previous work and produce better results. Experimental results show the effectiveness and flexibility of the proposed method compared to the previous work.

  • Moving Picture Coding by Lapped Transform and Edge Adaptive Deblocking Filter with Zero Pruning SPIHT

    Nasharuddin ZAINAL  Toshihisa TANAKA  Yukihiko YAMASHITA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:6
      Page(s):
    1608-1617

    We propose a moving picture coding by lapped transform and an edge adaptive deblocking filter to reduce the blocking distortion. We apply subband coding (SBC) with lapped transform (LT) and zero pruning set partitioning in hierarchical trees (zpSPIHT) to encode the difference picture. Effective coding using zpSPIHT was achieved by quantizing and pruning the quantized zeros. The blocking distortion caused by block motion compensated prediction is reduced by an edge adaptive deblocking filter. Since the original edges can be detected precisely at the reference picture, an edge adaptive deblocking filter on the predicted picture is very effective. Experimental results show that blocking distortion has been visually reduced at very low bit rate coding and better PSNRs of about 1.0 dB was achieved.

  • Analysis and Modeling of a Priority Inversion Scheme for Starvation Free Controller Area Networks

    Cheng-Min LIN  

     
    PAPER-Software System

      Vol:
    E93-D No:6
      Page(s):
    1504-1511

    Control Area Network (CAN) development began in 1983 and continues today. The forecast for annual world production in 2008 is approximately 65-67 million vehicles with 10-15 CAN nodes per vehicle on average . Although the CAN network is successful in automobile and industry control because the network provides low cost, high reliability, and priority messages, a starvation problem exists in the network because the network is designed to use a fixed priority mechanism. This paper presents a priority inversion scheme, belonging to a dynamic priority mechanism to prevent the starvation problem. The proposed scheme uses one bit to separate all messages into two categories with/without inverted priority. An analysis model is also constructed in this paper. From the model, a message with inverted priority has a higher priority to be processed than messages without inverted priority so its mean waiting time is shorter than the others. Two cases with and without inversion are implemented in our experiments using a probabilistic model checking tool based on an automatic formal verification technique. Numerical results demonstrate that low-priority messages with priority inversion have better expression in the probability in a full queue state than others without inversion. However, our scheme is very simple and efficient and can be easily implemented at the chip level.

  • Energy-Efficient Distributed Spatial Join Processing in Wireless Sensor Networks

    Min Soo KIM  Jin Hyun SON  Ju Wan KIM  Myoung Ho KIM  

     
    PAPER-Spatial Databases

      Vol:
    E93-D No:6
      Page(s):
    1447-1458

    In the area of wireless sensor networks, the efficient spatial query processing based on the locations of sensor nodes is required. Especially, spatial queries on two sensor networks need a distributed spatial join processing among the sensor networks. Because the distributed spatial join processing causes lots of wireless transmissions in accessing sensor nodes of two sensor networks, our goal of this paper is to reduce the wireless transmissions for the energy efficiency of sensor nodes. In this paper, we propose an energy-efficient distributed spatial join algorithm on two heterogeneous sensor networks, which performs in-network spatial join processing. To optimize the in-network processing, we also propose a Grid-based Rectangle tree (GR-tree) and a grid-based approximation function. The GR-tree reduces the wireless transmissions by supporting a distributed spatial search for sensor nodes. The grid-based approximation function reduces the wireless transmissions by reducing the volume of spatial query objects which should be pushed down to sensor nodes. Finally, we compare naive and existing approaches through extensive experiments and clarify our approach's distinguished features.

  • A Pattern Partitioning Algorithm for Memory-Efficient Parallel String Matching in Deep Packet Inspection

    HyunJin KIM  Hyejeong HONG  Dongmyoung BAEK  Sungho KANG  

     
    LETTER-Network Management/Operation

      Vol:
    E93-B No:6
      Page(s):
    1612-1614

    This paper proposes a pattern partitioning algorithm that maps multiple target patterns onto homogeneous memory-based string matchers. The proposed algorithm adopts the greedy search based on lexicographical sorting. By mapping as many target patterns as possible onto each string matcher, the memory requirements are greatly reduced.

  • A CFAR Circuit with Multiple Detection Cells for Automotive UWB Radars

    Satoshi TAKAHASHI  

     
    PAPER-Sensing

      Vol:
    E93-B No:6
      Page(s):
    1574-1582

    Future high-resolution short-range automotive radar will have a higher false alarm probability than the conventional low-resolution radar has. In a high-resolution radar, the reception signal becomes sensitive to the difference between intended and unintended objects. However, automotive radars must distinguish targets from background objects that are the same order of size; it leads to an increase in the false alarm probability. In this paper, a CFAR circuit for obtaining the target mean power, as well as the background mean power, is proposed to reduce the false alarm probability for high-resolution radars working in automotive environments. The proposed method is analytically evaluated with use of the characteristic function method. Spatial correlation is also considered in the evaluation, because the sizes of the both target and background objects approach the dimension of several range cells. Result showed the proposed CFAR with use of two alongside range cells could reduce the ratio of 6.4 dB for an example of an automotive situation.

  • Stochastic Sparse-Grid Collocation Algorithm for Steady-State Analysis of Nonlinear System with Process Variations

    Jun TAO  Xuan ZENG  Wei CAI  Yangfeng SU  Dian ZHOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:6
      Page(s):
    1204-1214

    In this paper, a Stochastic Collocation Algorithm combined with Sparse Grid technique (SSCA) is proposed to deal with the periodic steady-state analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the moment-matching parameterized model order reduction (PMOR) which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs Homogeneous Chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or Wavelet Bases to model the steady-state behavior in time domain. Secondly, contrary to Stochastic Galerkin Algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from Efficient Collocation Method, the heuristic approach which may result in "Rank deficient problem" and "Runge phenomenon," Sparse Grid technique is developed to select the collocation points needed in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steady-state analysis, it can be applied to any other kind of nonlinear system simulation with process variations, such as transient analysis, etc.

  • The Planar Hajós Calculus for Bounded Degree Graphs

    Kazuo IWAMA  Kazuhisa SETO  Suguru TAMAKI  

     
    PAPER-Graphs and Networks

      Vol:
    E93-A No:6
      Page(s):
    1000-1007

    The planar Hajos calculus (PHC) is the Hajos calculus with the restriction that all the graphs that appear in the construction (including a final graph) must be planar. The degree-d planar Hajos calculus (PHC(dd)) is PHC with the restriction that all the graphs that appear in the construction (including a final graph) must have maximum degree at most d. We prove the followings: (1) If PHC is polynomially bounded, then for any d ≥ 4, PHC(dd+2) can generate any non-3-colorable planar graphs of maximum degree at most d in polynomial steps. (2) If PHC can generate any non-3-colorable planar graphs of maximum degree 4 in polynomial steps, then PHC is polynomially bounded.

  • On Feedback Functions of Maximum Length Nonlinear Feedback Shift Registers

    Çağdaş ÇALIK  Meltem SÖNMEZ TURAN  Ferruh ÖZBUDAK  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1226-1231

    Feedback shift registers are basic building blocks for many cryptographic primitives. Due to the insecurities of Linear Feedback Shift Register (LFSR) based systems, the use of Nonlinear Feedback Shift Registers (NFSRs) became more popular. In this work, we study the feedback functions of NFSRs with period 2n. First, we provide two new necessary conditions for feedback functions to be maximum length. Then, we consider NFSRs with k-monomial feedback functions and focus on two extreme cases where k=4 and k=2n-1. We study construction methods for these special cases.

  • Enhanced Cancelable Biometrics for Online Signature Verification

    Daigo MURAMATSU  Manabu INUMA  Junji SHIKATA  Akira OTSUKA  

     
    LETTER-Analog Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1254-1259

    Cancelable approaches for biometric person authentication have been studied to protect enrolled biometric data, and several algorithms have been proposed. One drawback of cancelable approaches is that the performance is inferior to that of non-cancelable approaches. In this paper, we propose a scheme to improve the performance of a cancelable approach for online signature verification. Our scheme generates two cancelable dataset from one raw dataset and uses them for verification. Preliminary experiments were performed using a distance-based online signature verification algorithm. The experimental results show that our proposed scheme is promising.

  • DIRECT: Dynamic Key Renewal Using Secure Cluster Head Election in Wireless Sensor Networks

    Gicheol WANG  Kang-Suk SONG  Gihwan CHO  

     
    PAPER-Information Network

      Vol:
    E93-D No:6
      Page(s):
    1560-1571

    In modern sensor networks, key management is essential to transmit data from sensors to the sink securely. That is, sensors are likely to be compromised by attackers, and a key management scheme should renew the keys for communication as frequently as possible. In clustered sensor networks, CHs (Cluster Heads) tend to become targets of compromise attack because they collect data from sensors and deliver the aggregated data to the sink. However, existing key renewal schemes do not change the CH role nodes, and thus they are vulnerable to the compromise of CHs. Our scheme is called DIRECT (DynamIc key REnewal using Cluster head elecTion) because it materializes the dynamic key renewals through secure CH elections. In the scheme, the network is divided into sectors to separate CH elections in each sector from other sectors. Then, sensors establish pairwise keys with other sensors in their sector for intra-sector communication. Every CH election round, all sensors securely elect a CH in their sector by defeating the malicious actions of attackers. Therefore, the probability that a compromised node is elected as a CH decreases significantly. The simulation results show that our approach significantly improves the integrity of data, energy efficiency, and network longevity.

  • An Integrated CMOS Front-End Receiver with a Frequency Tripler for V-Band Applications

    Po-Hung CHEN  Min-Chiao CHEN  Chun-Lin KO  Chung-Yu WU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:6
      Page(s):
    877-883

    A direct-conversion receiver integrated with the CMOS subharmonic frequency tripler (SFT) for V-band applications is designed, fabricated and measured using 0.13-µm CMOS technology. The receiver consists of a low-noise amplifier, a down-conversion mixer, an output buffer, and an SFT. A fully differential SFT is introduced to relax the requirements on the design of the frequency synthesizer. Thus, the operational frequency of the frequency synthesizer in the proposed receiver is only 20 GHz. The fabricated receiver has a maximum conversion gain of 19.4 dB, a minimum single-side band noise figure of 10.2 dB, the input-referred 1-dB compression point of -20 dBm and the input third order inter-modulation intercept point of -8.3 dB. It draws only 15.8 mA from a 1.2-V power supply with a total chip area of 0.794 mm0.794 mm. As a result, it is feasible to apply the proposed receiver in low-power wireless transceiver in the V-band applications.

  • Measurement and Evaluation of the Bioelectrical Impedance of the Human Body by Deconvolution of a Square Wave

    Yuhwai TSENG  Chauchin SU  Chien-Nan Jimmy LIU  

     
    LETTER-Biological Engineering

      Vol:
    E93-D No:6
      Page(s):
    1656-1660

    In this study, we use the deconvolution of a square test stimulus to replace a series of sinusoidal test waveforms with different frequencies to simplify the measurement of human body impedance. The average biological impedance of body parts is evaluated by constructing a frequency response of the equivalent human body system. Only two stainless-steel electrodes are employed in the measurement and evaluation.

8461-8480hit(21534hit)