The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

8441-8460hit(21534hit)

  • New Conditions for Secure Knapsack Schemes against Lattice Attack

    Noboru KUNIHIRO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1058-1065

    Many knapsack cryptosystems have been proposed but almost all the schemes are vulnerable to lattice attack because of their low density. To prevent the lattice attack, Chor and Rivest proposed a low weight knapsack scheme, which made the density higher than critical density. In Asiacrypt2005, Nguyen and Stern introduced pseudo-density and proved that if the pseudo-density is low enough (even if the usual density is not low enough), the knapsack scheme can be broken by a single call to SVP/CVP oracle. However, the usual density and the pseudo-density are not sufficient to measure the resistance to the lattice attack individually. In this paper, we first introduce the new notion of density D, which naturally unifies the previous two density. Next, we derive conditions for our density so that a knapsack scheme is secure against lattice attack. We obtain a critical bound of density which depends only on the rate of the message length and its Hamming weight. Furthermore, we show that if D<0.8677, the knapsack scheme is solved by lattice attack. Next, we show that the critical bound goes to 1 if the Hamming weight decreases, which means that it is (almost) impossible to construct a low weight knapsack scheme which is supported by an argument of density.

  • High-Resistance Resistor Consisting of a Subthreshold CMOS Differential Pair

    Shin'ichi ASAI  Ken UENO  Tetsuya ASAI  Yoshihito AMEMIYA  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    741-746

    We propose a CMOS circuit that can be used as an equivalent to resistors. This circuit uses a simple differential pair with diode-connected MOSFETs and operates as a high-resistance resistor when driven in the subthreshold region of MOSFETs. Its resistance can be controlled in a range of 1-1000 MΩ by adjusting a tail current for the differential pair. The results of device fabrication with a 0.35-µm 2P-4M CMOS process technology is described. The resistance was 13 MΩ for a tail current of 10 nA and 135 MΩ for 1 nA. The chip area was 105 µm110 µm. Our resistor circuit is useful to construct many high-resistance resistors in a small chip area.

  • A Framework for Information Distribution, Task Execution and Decision Making in Multi-Robot Systems

    Matthias RAMBOW  Florian ROHRMÜLLER  Omiros KOURAKOS  Draen BRŠVCI  Dirk WOLLHERR  Sandra HIRCHE  Martin BUSS  

     
    INVITED PAPER

      Vol:
    E93-D No:6
      Page(s):
    1352-1360

    Robotic systems operating in the real-world have to cope with unforeseen events by determining appropriate decisions based on noisy or partial knowledge. In this respect high functional robots are equipped with many sensors and actuators and run multiple processing modules in parallel. The resulting complexity is even further increased in case of cooperative multi-robot systems, since mechanisms for joint operation are needed. In this paper a complete and modular framework that handles this complexity in multi-robot systems is presented. It provides efficient exchange of generated data as well as a generic scheme for task execution and robot coordination.

  • MIMO-OC Scheme to Suppress Co-channel Interference

    Wei Jiong ZHANG  Xi Lang ZHOU  Rong Hong JIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1244-1247

    In this letter, we present a multiple-input multiple-output (MIMO) optimal combining (OC) scheme based on alternate iteration. With the channel state information (CSI) of co-channel interferers (CCIs), this algorithm can be used in flat fading and frequency selective channels to suppress CCIs. Compared with the optimal transceiver of MIMO maximal ratio combining (MRC) systems, results of simulation show that this scheme improves the uplink transmission performance significantly.

  • DIRECT: Dynamic Key Renewal Using Secure Cluster Head Election in Wireless Sensor Networks

    Gicheol WANG  Kang-Suk SONG  Gihwan CHO  

     
    PAPER-Information Network

      Vol:
    E93-D No:6
      Page(s):
    1560-1571

    In modern sensor networks, key management is essential to transmit data from sensors to the sink securely. That is, sensors are likely to be compromised by attackers, and a key management scheme should renew the keys for communication as frequently as possible. In clustered sensor networks, CHs (Cluster Heads) tend to become targets of compromise attack because they collect data from sensors and deliver the aggregated data to the sink. However, existing key renewal schemes do not change the CH role nodes, and thus they are vulnerable to the compromise of CHs. Our scheme is called DIRECT (DynamIc key REnewal using Cluster head elecTion) because it materializes the dynamic key renewals through secure CH elections. In the scheme, the network is divided into sectors to separate CH elections in each sector from other sectors. Then, sensors establish pairwise keys with other sensors in their sector for intra-sector communication. Every CH election round, all sensors securely elect a CH in their sector by defeating the malicious actions of attackers. Therefore, the probability that a compromised node is elected as a CH decreases significantly. The simulation results show that our approach significantly improves the integrity of data, energy efficiency, and network longevity.

  • Measurement and Evaluation of the Bioelectrical Impedance of the Human Body by Deconvolution of a Square Wave

    Yuhwai TSENG  Chauchin SU  Chien-Nan Jimmy LIU  

     
    LETTER-Biological Engineering

      Vol:
    E93-D No:6
      Page(s):
    1656-1660

    In this study, we use the deconvolution of a square test stimulus to replace a series of sinusoidal test waveforms with different frequencies to simplify the measurement of human body impedance. The average biological impedance of body parts is evaluated by constructing a frequency response of the equivalent human body system. Only two stainless-steel electrodes are employed in the measurement and evaluation.

  • An Integrated CMOS Front-End Receiver with a Frequency Tripler for V-Band Applications

    Po-Hung CHEN  Min-Chiao CHEN  Chun-Lin KO  Chung-Yu WU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:6
      Page(s):
    877-883

    A direct-conversion receiver integrated with the CMOS subharmonic frequency tripler (SFT) for V-band applications is designed, fabricated and measured using 0.13-µm CMOS technology. The receiver consists of a low-noise amplifier, a down-conversion mixer, an output buffer, and an SFT. A fully differential SFT is introduced to relax the requirements on the design of the frequency synthesizer. Thus, the operational frequency of the frequency synthesizer in the proposed receiver is only 20 GHz. The fabricated receiver has a maximum conversion gain of 19.4 dB, a minimum single-side band noise figure of 10.2 dB, the input-referred 1-dB compression point of -20 dBm and the input third order inter-modulation intercept point of -8.3 dB. It draws only 15.8 mA from a 1.2-V power supply with a total chip area of 0.794 mm0.794 mm. As a result, it is feasible to apply the proposed receiver in low-power wireless transceiver in the V-band applications.

  • A Buffer Management Issue in Designing SSDs for LFSs

    Jaegeuk KIM  Jinho SEOL  Seungryoul MAENG  

     
    LETTER-Computer System

      Vol:
    E93-D No:6
      Page(s):
    1644-1647

    This letter introduces a buffer management issue in designing SSDs for log-structured file systems (LFSs). We implemented a novel trace-driven SSD simulator in SystemC language, and simulated several SSD architectures with the NILFS2 trace. From the results, we give two major considerations related to the buffer management as follows. (1) The write buffer is used as a buffer not a cache, since all write requests are sequential in NILFS2. (2) For better performance, the main architectural factor is the bus bandwidth, but 332 MHz is enough. Instead, the read buffer makes a key role in performance improvement while caching data. To enhance SSDs, accordingly, it is an effective way to make efficient read buffer management policies, and one of the examples is tracking the valid data zone in NILFS2, which can increase the data hit ratio in read buffers significantly.

  • An Ultra Low Power and Variation Tolerant GEN2 RFID Tag Front-End with Novel Clock-Free Decoder

    Sung-Jin KIM  Minchang CHO  SeongHwan CHO  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    785-795

    In this paper, an ultra low power analog front-end for EPCglobal Class 1 Generation 2 RFID tag is presented. The proposed RFID tag removes the need for high frequency clock and counters used in conventional tags, which are the most power hungry blocks. The proposed clock-free decoder employs an analog integrator with an adaptive current source that provides a uniform decoding margin regardless of the data rate and a link frequency extractor based on a relaxation oscillator that generates frequency used for backscattering. A dual supply voltage scheme is also employed to increase the power efficiency of the tag. In order to improve the tolerance of the proposed circuit to environmental variations, a self-calibration circuit is proposed. The proposed RFID analog front-end circuit is designed and simulated in 0.25 µm CMOS, which shows that the power consumption is reduced by an order magnitude compared to the conventional RFID tags, without losing immunity to environmental variations.

  • Analysis and Modeling of a Priority Inversion Scheme for Starvation Free Controller Area Networks

    Cheng-Min LIN  

     
    PAPER-Software System

      Vol:
    E93-D No:6
      Page(s):
    1504-1511

    Control Area Network (CAN) development began in 1983 and continues today. The forecast for annual world production in 2008 is approximately 65-67 million vehicles with 10-15 CAN nodes per vehicle on average . Although the CAN network is successful in automobile and industry control because the network provides low cost, high reliability, and priority messages, a starvation problem exists in the network because the network is designed to use a fixed priority mechanism. This paper presents a priority inversion scheme, belonging to a dynamic priority mechanism to prevent the starvation problem. The proposed scheme uses one bit to separate all messages into two categories with/without inverted priority. An analysis model is also constructed in this paper. From the model, a message with inverted priority has a higher priority to be processed than messages without inverted priority so its mean waiting time is shorter than the others. Two cases with and without inversion are implemented in our experiments using a probabilistic model checking tool based on an automatic formal verification technique. Numerical results demonstrate that low-priority messages with priority inversion have better expression in the probability in a full queue state than others without inversion. However, our scheme is very simple and efficient and can be easily implemented at the chip level.

  • Layered Soft Interference Cancellation for SC-MIMO Spatial Multiplexing Transmission with High Level Data Modulation

    Akinori NAKAJIMA  Noriyuki FUKUI  Hiroshi KUBO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1641-1644

    For multiple-input multiple-output (MIMO) spatial multiplexing, signal separation/detection is one of the most important signal processing parts, so that signal separation/detection schemes are being vigorously researched. As a promising signal separation/detection scheme, frequency-domain iterative soft interference cancellation (FD-SIC) has been proposed. Although iterative FD-SIC can provide the transmission performance close to lower bound for QPSK, the accuracy of signal separation/detection significantly degrades in case of high level data modulation. Therefore, in this paper, we propose layered soft interference cancellation (LSIC). We consider single-carrier (SC)-MIMO spatial multiplexing with frequency domain equalization (FDE). The achievable frame error rate (FER) performances with LSIC are evaluated by computer simulation to show that LSIC can provide better FER performance than iterative FD-SIC.

  • Execution Assurance for Massive Computing Tasks

    Ting WANG  Ling LIU  

     
    INVITED PAPER

      Vol:
    E93-D No:6
      Page(s):
    1343-1351

    Consider a client who intends to perform a massive computing task comprsing a number of sub-tasks, while both storage and computation are outsourced by a third-party service provider. How could the client ensure the integrity and completeness of the computation result? Meanwhile, how could the assurance mechanism incur no disincentive, e.g., excessive communication cost, for any service provider or client to participate in such a scheme? We detail this problem and present a general model of execution assurance for massive computing tasks. A series of key features distinguish our work from existing ones: a) we consider the context wherein both storage and computation are provided by untrusted third parties, and client has no data possession; b) we propose a simple yet effective assurance model based on a novel integration of the machineries of data authentication and computational private information retrieval (cPIR); c) we conduct an analytical study on the inherent trade-offs among the verification accuracy, and the computation, storage, and communication costs.

  • Fast Interior Point Method for MIMO Transmit Power Optimization with Per-Antenna Power Constraints

    Yusuke OHWATARI  Anass BENJEBBOUR  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1484-1493

    For multiple-input multiple-output (MIMO) precoded transmission that has individual constraints on the maximum power of each transmit antenna or a subset of transmit antennas, the transmit power optimization problem is a non-linear convex optimization problem with a high level of computational complexity. In this paper, assuming the use of the interior point method (IPM) to solve this problem, we propose two efficient techniques that reduce the computational complexity of the IPM by appropriately setting its parameters. Based on computer simulation, the achieved reductions in the level of the computational complexity are evaluated using the proposed techniques for both the fairness and the sum-rate maximization criteria assuming i.i.d Rayleigh fading MIMO channels and block diagonalization zero-forcing as a multi-user MIMO (MU-MIMO) precoder.

  • Design and Optimization of Transparency-Based TAM for SoC Test

    Tomokazu YONEDA  Akiko SHUTO  Hideyuki ICHIHARA  Tomoo INOUE  Hideo FUJIWARA  

     
    PAPER-Information Network

      Vol:
    E93-D No:6
      Page(s):
    1549-1559

    We present a graph model and an ILP model for TAM design for transparency-based SoC testing. The proposed method is an extension of a previous work proposed by Chakrabarty with respect to the following three points: (1) constraint relaxation by considering test data flow for each core separately, (2) optimization of the cost for transparency as well as the cost for additional interconnect area simultaneously and (3) consideration of additional bypass paths. Therefore, the proposed ILP model can represent various problems including the same problem as the previous work and produce better results. Experimental results show the effectiveness and flexibility of the proposed method compared to the previous work.

  • A Neural Recording Amplifier with Low-Frequency Noise Suppression

    Takeshi YOSHIDA  Yoshihiro MASUI  Ryoji EKI  Atsushi IWATA  Masayuki YOSHIDA  Kazumasa UEMATSU  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    849-854

    To detect neural spike signals, low-power neural signal recording frontend circuits must amplify neural signals with below 100 µV amplitude and a few hundred Hz frequency while suppressing a large DC offset voltage, 1/f noise of MOSFETs, and induced noise of AC power supply. To overcome the problem of unwanted noise at such a low signal level, a low-noise neural signal detection amplifier with low-frequency noise suppression scheme was developed utilizing a new autozeroing technique. A test chip was designed and fabricated with a mixed signal 0.18-µm CMOS technology. The voltage gain of 39 dB at the bandwidth of the neural signal and the gain reduction of 20 dB at AC supply noise of 60 Hz were obtained. The input equivalent noise and power dissipation were 90 nV/root-Hz and 90 µW at a supply voltage of 1.5 V, respectively.

  • Incremental Digital Content Object Delivering in Distributed Systems

    Lung-Pin CHEN  I-Chen WU  William CHU  Jhen-You HONG  Meng-Yuan HO  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:6
      Page(s):
    1512-1520

    Deploying and managing content objects efficiently is critical for building a scalable and transparent content delivery system. This paper investigates the advanced incremental deploying problem of which the objects are delivered in a successive manner. Recently, the researchers show that the minimum-cost content deployment can be obtained by reducing the problem to the well-known network flow problem. In this paper, the maximum flow algorithm for a single graph is extended to the incremental growing graph. Based on this extension, an efficient incremental content deployment algorithm is developed in this work.

  • Discriminating Semantic Visual Words for Scene Classification

    Shuoyan LIU  De XU  Songhe FENG  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:6
      Page(s):
    1580-1588

    Bag-of-Visual-Words representation has recently become popular for scene classification. However, learning the visual words in an unsupervised manner suffers from the problem when faced these patches with similar appearances corresponding to distinct semantic concepts. This paper proposes a novel supervised learning framework, which aims at taking full advantage of label information to address the problem. Specifically, the Gaussian Mixture Modeling (GMM) is firstly applied to obtain "semantic interpretation" of patches using scene labels. Each scene induces a probability density on the low-level visual features space, and patches are represented as vectors of posterior scene semantic concepts probabilities. And then the Information Bottleneck (IB) algorithm is introduce to cluster the patches into "visual words" via a supervised manner, from the perspective of semantic interpretations. Such operation can maximize the semantic information of the visual words. Once obtained the visual words, the appearing frequency of the corresponding visual words in a given image forms a histogram, which can be subsequently used in the scene categorization task via the Support Vector Machine (SVM) classifier. Experiments on a challenging dataset show that the proposed visual words better perform scene classification task than most existing methods.

  • A New CCM (Carbon Composite Matrix) Material with Improved Shielding Effectiveness for X-Band Application

    Yeong-Chul CHUNG  Kyung-Won LEE  Ic-Pyo HONG  Kyung-Hyun OH  Jong-Gwan YOOK  

     
    LETTER-Electromagnetic Theory

      Vol:
    E93-C No:6
      Page(s):
    929-931

    In this letter, a new CCM material, adding Ni powder to a conventional CCM, for X-band applications is designed and analyzed to improve the SE. To obtain the SE of the fabricated CCM accurately, material constants of the CCM of the permittivity and permeability were extracted using transmission/reflection measurements. Using the material constants derived from the measurement, the SE was calculated and the results were verified using a commercial full-wave three-dimensional electromagnetic wave simulator. The SE of the proposed the CCM was improved by approximately 4 dB in the X band compared to that of a conventional CCM. The CCM proposed in this paper can be applied as a shielding material as well as for housing of various communication systems and electrical instruments.

  • Estimates of User Interest Using Timing Structures between Proactive Content-Display Updates and Eye Movements

    Takatsugu HIRAYAMA  Jean-Baptiste DODANE  Hiroaki KAWASHIMA  Takashi MATSUYAMA  

     
    PAPER-Human-computer Interaction

      Vol:
    E93-D No:6
      Page(s):
    1470-1478

    People are being inundated under enormous volumes of information and they often dither about making the right choices from these. Interactive user support by information service system such as concierge services will effectively assist such people. However, human-machine interaction still lacks naturalness and thoughtfulness despite the widespread utilization of intelligent systems. The system needs to estimate user's interest to improve the interaction and support the choices. We propose a novel approach to estimating the interest, which is based on the relationship between the dynamics of user's eye movements, i.e., the endogenous control mode of saccades, and machine's proactive presentations of visual contents. Under a specially-designed presentation phase to make the user express the endogenous saccades, we analyzed the timing structures between the saccades and the presentation events. We defined resistance as a novel time-delay feature representing the duration a user's gaze remains fixed on the previously presented content regardless of the next event. In experimental results obtained from 10 subjects, we confirmed that resistance is a good indicator for estimating the interest of most subjects (75% success in 28 experiments on 7 subjects). This demonstrated a higher accuracy than conventional estimates of interest based on gaze duration or frequency.

  • Trends in Low-Power, Digitally Assisted A/D Conversion Open Access

    Boris MURMANN  

     
    INVITED PAPER

      Vol:
    E93-C No:6
      Page(s):
    718-729

    This paper discusses recent trends in the area of low-power, high-performance A/D conversion. We examine survey data collected over the past twelve years to show that the conversion energy of ADCs has halved every two years, while the speed-resolution product has doubled approximately only every four years. A closer inspection on the impact of technology scaling, and developments in ADC design are then presented to explain the observed trends. Finally, we review opportunities in digitally assisted design for the most popular converter architectures.

8441-8460hit(21534hit)