The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] UMP(320hit)

281-300hit(320hit)

  • Additive Noise Response of a Charge Pump Phase-Locked Loop

    Bishnu Charan SARKAR  Muralidhar NANDI  

     
    LETTER-Analog Signal Processing

      Vol:
    E82-A No:10
      Page(s):
    2291-2293

    The additive noise response of a charge pump phase-locked loop in the synchronous mode of operation has been studied. In order to determine the tracking and noise performances of the loop, mean square values of tracking error and local oscillator phase jitter have been analytically obtained. Analytical results agree well with the simulation results obtained here and elsewhere. The analysis performed can be used in choosing different system parameters for optimum system operation.

  • A High Voltage Generator Using Charge Pump Circuit for Low Voltage Flash Memories

    Kyeng-Won MIN  Shi-Ho KIM  

     
    LETTER-Electronic Circuits

      Vol:
    E82-C No:5
      Page(s):
    781-784

    An on-chip high voltage generator applicable to low voltage flash memory is introduced. Bootstrapped gate transfer switches of two parallel paths suppress the voltage loss due to threshold voltage drop of transfer transistors. The simulated results demonstrate that proposed circuit designed with NMOS transistors having 0.8 volt threshold voltage works like an ideal charge pump circuit near 1.0 volt range with enough current driving capability.

  • Assembly and Electrical Wiring Technologies on Planar Lightwave Circuit (PLC) Platform Providing Hybrid Integration of Optoelectronic Devices and Integrated Circuits (ICs)

    Takaharu OHYAMA  Yuji AKAHORI  Masahiro YANAGISAWA  Hideki TSUNETSUGU  Shinji MINO  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-C No:2
      Page(s):
    370-378

    Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.

  • Assembly and Electrical Wiring Technologies on Planar Lightwave Circuit (PLC) Platform Providing Hybrid Integration of Optoelectronic Devices and Integrated Circuits (ICs)

    Takaharu OHYAMA  Yuji AKAHORI  Masahiro YANAGISAWA  Hideki TSUNETSUGU  Shinji MINO  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-B No:2
      Page(s):
    422-430

    Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.

  • A High Performance Voltage Down Converter (VDC) Using New Flexible Control Technology of Driving Current

    Tetsuo ENDOH  Kazutoshi NAKAMURA  Fujio MASUOKA  

     
    PAPER-Electronic Circuits

      Vol:
    E81-C No:12
      Page(s):
    1905-1912

    A high performance voltage down converter (VDC) is proposed in this paper. The proposed VDC can automatically control the driving current in seven phases to reduce the fluctuation of output voltage in VDC. By using above new flexible control technology of driving current, the fluctuation of output voltage can be suppressed to less than 10% and the average consuming current of VDC can be suppressed to 34 µA, even if the operation frequency is 200 MHz at the average driving current 100 mA. Therefore, the proposed VDC can operate with large driving current, low-power consumption and good response at the same time. Above all, this technology is very suitable for high perform ULSIs which require large load current, very low-power and high speed operation.

  • Presumption of Permittivity for Dielectric Inverse Scattering ProblemSource and Radiation Field Solution

    Daisuke KATO  Shinobu TOKUMARU  

     
    PAPER

      Vol:
    E81-C No:12
      Page(s):
    1773-1778

    In this paper, we analyze the inverse scattering problem by a new deterministic method called "Source and Radiation Field Solution," which has the merit that both the source and the radiation field can be treated at the same time, the effect of which has already shown in ordinary scattering problems.

  • Steady-State Analysis of Photorefractive Ring Resonator with Self-Pumped Four-Wave Mixing (PRRR-SPFWM)

    Mototsugu TAKAMURA  Atsushi OKAMOTO  Kunihiro SATO  

     
    PAPER-Opto-Electronics

      Vol:
    E81-C No:7
      Page(s):
    1122-1127

    A photorefractive ring resonator with self-pumped four-wave mixing (PRRR-SPFWM) in which the Cat mirror region and the four-wave mixing region are formed in a single photorefractive crystal is proposed, and the steady-state analysis of this unknown device is first performed. Since the backward pump beam is generated as a phase conjugate of the forward pump beam in the Cat mirror region, counterpropagation of both pump beams is spontaneously obtained. We analyze its oscillation intensities in steady state, and show that the threshold coupling strength of oscillation depends on the cavity mirror reflectivity and the reflectivity of the Cat mirror region. We also show interesting property of PRRR-SPFWM, the possibility to switch over between unidirectional and bidirectional oscillation by controlling the amplitude of coupling strength.

  • High Frequency Flip-Chip Bonding Technologies and Their Application to Microwave/Millimeter-Wave ICs

    Hiroyuki SAKAI  Takayuki YOSHIDA  Morikazu SAGAWA  

     
    INVITED PAPER-Functional Modules and the Design Technology

      Vol:
    E81-C No:6
      Page(s):
    810-818

    This paper describes new IC design concepts using flip-chip bonding technologies for microwave and millimeter-wave circuit integration. Two types of bonding technologies, stud bump bonding (SBB) and micro bump bonding (MBB) are introduced, and their applications to microwave and millimeter-wave ICs are presented. Receiver front-end hybrid IC (HIC) for cellular and PHS handsets using SBB and new millimeter-wave ICs on Si substrate called millimeter flip-chip IC (MFIC) using MBB have been designed and fabricated to prove their advantages. These flip-chip bonding technologies are experimentally proven to provide excellent solutions for high performance and compact-sized ICs with low-cost. The HIC concept is applicable consistently over a wide range of devices from RF/microwave to millimeter-wave region.

  • Development of K-Band Front-End Devices for Broadband Wireless Communication Systems Using Millimeter-Wave Flip-Chip IC Technology

    Kazuaki TAKAHASHI  Suguru FUJITA  Hiroyuki YABUKI  Takayuki YOSHIDA  Yoshito IKEDA  Hiroyuki SAKAI  Morikazu SAGAWA  

     
    PAPER-Functional Modules and the Design Technology

      Vol:
    E81-C No:6
      Page(s):
    827-833

    This paper describes new millimeter-wave ICs based on flip-chip bonding using micro bumps on a low cost silicon substrate, named millimeter-wave flip-chip ICs (MFICs). They have significant advantages such as good performance, low cost and excellent flexibility in the active device selection which makes them superior to conventional monolithic microwave integrated circuits (MMICs). In order to demonstrate these advantages, a K-band front-end block for a broadband wireless communication equipment was designed and fabricated. This front-end block consists of four MFIC chips: a low noise amplifier (LNA), a down converter and two medium power amplifiers. These chips are designed to satisfy stable operation conditions using a simplified model derived for micro bump bonding (MBB). In experimental measurements; the LNA using heterojunction field-effect transistors (HFETs) had an 18 dB gain, the down converter using an HFET had a 9. 5 dB conversion loss, and two power amplifiers using heterojunction bipolar transistors (HBTs) had saturated powers of 13. 0 dBm and 11. 7 dBm, respectively. The performance for each of the developed ICs agreed with the designed values, and satisfied circuit requirements. These results show that the MFIC technique is a potential technology for manufacturing multi-functional millimeter-wave ICs.

  • Evaluation of the Voltage Down Converter (VDC) with Low Ratio of Consuming Current to Load Current in DC/AC Operation Mode

    Tetsuo ENDOH  Kazutoshi NAKAMURA  Fujio MASUOKA  

     
    PAPER-Electronic Circuits

      Vol:
    E81-C No:6
      Page(s):
    968-974

    This paper describes the evaluation of the Voltage Down Converter (VDC) with low ratio of consuming current to load current in DC/AC operation mode. The stability, response and power consumption are investigated. First, for the stability and response, the VDC can operate in the condition that the bounce of the down voltage (dVDL) is no more than 10% of the setting voltage and the maximum load operation frequency (fmax) is 100 MHz at the average load current 70 mA (the maximum load current 140 mA). Secondly, for the power consumption, by using this VDC technology, the value of IC/IL can be suppressed to 5.1E-4 (IC: total consuming current in VDC, IL: average load current) in the condition that dVDL is no more than 10% of the setting voltage and fmax is 10 MHz at the average load current 70 mA. Thus, it is made clear that the VDC can realize high stability, good response and low power consumption at the same time. This technology is suitable for high performance ULSIs which require large load current and low-power consumption.

  • Analysis and Synthesis of a Class of Microwave Filters from 2-Variable Point of View

    Hideaki FUJIMOTO  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E81-C No:6
      Page(s):
    975-984

    The following, which is related to the design of the microwave filters, is mainly presented: (1) certain useful approximation which can be obtained by double-resistive- terminated 2-ports consisting of a cascade of two 1-variable 2-ports in different variables, and (2) an approach for filter design from 2-variable viewpoint. Approximations presented provide useful magnitude responses in 2-D domain. Hence it is discussed that how the provided 2-D responses can be used for the design of the microwave filters. Furthermore, properties of the 2-variable transfer functions resulting in such circuits are given.

  • Future Directions of Media Processors

    Shunichi ISHIWATA  Takayasu SAKURAI  

     
    INVITED PAPER-Multimedia

      Vol:
    E81-C No:5
      Page(s):
    629-635

    Media processors have emerged so that a single LSI can realize multiple multimedia functions, such as graphics, video, audio and telecommunication with effectively shared hardware and flexible software. First, the difference between media processors and general-purpose microprocessors with multimedia extensions is clarified. Features for processes and data in the multimedia applications are summarized and are followed by the multimedia enhancements that the recent general-purpose microprocessors use. The architecture for media processors reflects the further optimized utilization of these features and realizes better price-performance ratio than the general-purpose microprocessors. Finally, the future directions of media processors are estimated, based on the performance, the power dissipation and the die size of the present microprocessors with multimedia extensions and the present media processors. The demand to improve the price-performance ratio for the whole system and to reduce the power consumption makes the media processor evolve into a system processor, which integrates not only the media processor but also the function of a general-purpose microprocessor, various interfaces and DRAMs.

  • Ferroelectric Memory Circuit Technology and the Application to Contactless IC Card

    Koji ASARI  Hiroshige HIRANO  Toshiyuki HONDA  Tatsumi SUMI  Masato TAKEO  Nobuyuki MORIWAKI  George NAKANE  Tetsuji NAKAKUMA  Shigeo CHAYA  Toshio MUKUNOKI  Yuji JUDAI  Masamichi AZUMA  Yasuhiro SHIMADA  Tatsuo OTSUKI  

     
    PAPER

      Vol:
    E81-C No:4
      Page(s):
    488-496

    Ferroelectric non-volatile memory (FeRAM) has been inspiring interests since bismuth layer perovskite material family was found to provide "Fatigue Free" endurance, superior retention and imprint characteristics. In this paper, we will provide new circuits technology for FeRAM developed to implement high speed operation, low voltage operation and low power consumption. Performance of LSI embedded with FeRAM for contactless IC card is also provided to demonstrate the feasibility of the circuit technology.

  • Large Capacity Submarine Repeaterless Transmission System Design Employing Remote Pumping

    Norio OHKAWA  Tetsuo TAKAHASHI  Yoshiaki MIYAJIMA  Mamoru AIKI  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E81-B No:3
      Page(s):
    586-596

    Repeaterless transmission system design employing remote pumping in a single fiber is clarified. The design is aimed to realize cost effective submarine transmission systems with easy maintenance. Remote pumping in a single fiber can extend repeaterless transmission distance without decreasing the system capacity per cable. It is applicable for high-count-fiber cable such as the 100-fiber submarine cable already developed. A simple but effective system configuration is presented that uses remote pumping from receiver end; both remote-pre erbium-doped fiber (EDF) amplification and backward pumping Raman amplification are employed. Stable transmission can be obtained without optical isolators, therefore the optical time domain reflectometry (OTDR) method is supported by this system. Three fiber configurations, which consist of dispersion shifted fiber (DSF), pure silica core fiber (PSCF) and a combination of DSF and PSCF, are examined to compare system performance. Remote-pre EDF is optimized in terms of length and location from receiver end by optical SNR (OSNR) calculations. Maximum signal output power is also determined through a waveform simulation based on the split-step Fourier method, in order to avoid waveform distortion caused by the combined effect of self-phase modulation (SPM) and group velocity dispersion (GVD). Through these calculations and simulations, we confirm the proposed repeaterless transmission system performance of 600Mbit/s-451 km with PSCF, 2. 5 Gbit/s-407 km with DSF + PSCF, and 10 Gbit/s-376 km with DSF+PSCF, which include system margin.

  • A Tunable Femtosecond Modelocked Semiconductor Laser for Applications in OTDM-Systems

    Reinhold LUDWIG  Stefan DIEZ  Armin EHRHARDT  Lothar KULLER  Wilhelm PIEPER  Hans G. WEBER  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    140-145

    In this paper, we describe the properties of an external cavity modelocked semiconductor laser with a tunability of wavelength, pulse width and repetition rate. This modelocked laser generates optical pulses with pulse widths down to 180 fs and with repetition rates up to 14 GHz in a 120 nm wavelength range near 1. 55 µm or 1. 3 µm. The generated pulses are close to the transform limit and are therefore suitable for very high speed communication systems. In addition to the tunability, this pulse source is a compact and mechanically stable device. We report on two applications of this pulse source in optical time division multiplexing experiments. In the first example the modelocked laser is used as an all-optical clock recovery. In the second example the modelocked laser was used to characterize an interferometric switch by pump-probe experiments.

  • Improvement of Operation Reliability at Room Temperature for a Single Electron Pump

    Kouichirou YAMAMURA  Yoshiyuki SUDA  

     
    PAPER

      Vol:
    E81-C No:1
      Page(s):
    16-20

    We have studied the methods to operate single electron circuits with high reliability at room temperature. By simulation, we have numerically analyzed the error mechanisms of the room-temperature operation of a 2-gate electron pump as a fundamental single electron element circuit. We have found from the results that under the room temperature condition where the ratio of the electrostatic energy to the thermal energy for a transition electron is not so large, the minimum operation error probability is obtained at the specific gate sweep time when the circuit is operated with ramp-waveform control voltages. The analyses indicate that in the shorter sweep time range, the error probability increases because the gate voltage has changed before the significant electron transition occurs, and that in the longer sweep time range, the error probability also increases due to undesired-single-transition events. The optimum sweep time is estimated statically with the relationship between desired- and undesired-single-transition rates as a function of control gate voltages. Using the optimum condition, the operation reliability is expected to be improved by a factor of 100. This estimation method has been also confirmed by the time-dependent Monte-Carlo simulation.

  • Analysis of Overload of a Charge-Pump PLL

    Eun-Chang CHOI  Bhum-Cheol LEE  Hee-Young JUNG  Kwon-Chul PARK  

     
    PAPER-Communication Device and Circuit

      Vol:
    E80-B No:12
      Page(s):
    1770-1779

    In this paper, we analyze overload and stability in the charge-pump phase locked loop (PLL). We propose a new computational model that can be applied for the precise estimation of the physical limits of charge-pump, the leakage current of loop filter and waveform distortion of charge-pump PLL operating in high speed. We derive the exact mathematical expressions of the parameters describing the steady-state behavior of the PLL as well as the transient-state behavior. Performance comparisons with the conventional model are provided through numerical results. Algorithms for approximate analysis is also provided. The new model is particularity useful for analyzing the cases that the charge-pump PLL operates in high- speed or the loop filter has large leakage current.

  • On Information Dumping Phenomenon in Free Recall Effects of Priority Instructions on Free Recall of Pictures and Words

    Atsuo MURATA  

     
    LETTER-Human Communications and Ergonomics

      Vol:
    E80-A No:9
      Page(s):
    1729-1731

    The present study investigated the human ability to selectively process pictures and words in free recall. We explored whether successful bias towards a subset of priority items occurs at the expense of the remaining items-i.e., whether successful priority item bias necessitates the dumping of information related to non-priority items. It has been shown that an increase in the percentage of correct recalls to items given priority in the pre-test instructions induces a decrease in the percentage of correct recalls for non-priority items. Even in a free recall experimental paradigm, the information dumping phenomenon was observed. However, there were no effects of stimulus presentation time and stimulus modality (picture vs. word) on the percentage of correct recalls detected.

  • A Study on Key Technologies to Realize Magneto-Optical Storage of Over 7 GBytes in CD Sized Disk

    Kenji TORAZAWA  Satoshi SUMI  Seiji YONEZAWA  Naomi SUZUKI  Yasuhito TANAKA  Akira TAKAHASHI  Yoshiteru MURAKAMI  Norio OHTA  

     
    INVITED PAPER

      Vol:
    E80-C No:9
      Page(s):
    1142-1148

    Recently, many types of high-density recording technologies for future MO (Magneto-Optical) storage have been reported. MSR (Magnetically Induced Super Resolution) technology is one of the most promising candidates, and over ten types of MSR technologies have been already proposed. However, they are not well-discussed from the viewpoint of total recording technology which would include the recording and readout methods, the pick-up technology and the signal processing technology. Key technologies for realizing MO storage of over 7 GBytes in a CD-sized disk using a red laser are proposed, and the experimental results pertaining to each key technology are described. The write/read characteristics were examined for the CAD (Center Aperture Detection)-MSR disk. From the characteristics of the CAD-MSR disk combined with laser pumped magnetic field modulation recording, it was shown that land/groove (0.7 µm width) recording with the linear density of 0.27 µm/bit and track pitch below 0.7 µm can be realized. It was also shown that CAD-MSR disk is well combined with an OSR (Optical Super Resolution) pick up, laser pumped read-out and PRML (Partial Response Maximum Likelihood) technologies which are very useful to achieve a high density MO disk. Using CAD-MSR disk combined with above technologies together, high density write/read with a bit length of 0.2 µm and a track pitch of 0.6 µm should be realized with using the laser of 635 nm wavelength. Applying the CAD-MSR disks to a CD sized MO disk, the capacity becomes over 7 GBytes (Format efficiency: 80%), which is 20 times higher than 5.25 inches MO disk and 1.5 times than DVD-ROM.

  • Isolator-Free DFB-LD Module with TEC Control Using Silicon Waferboard

    Koji TERADA  Seimi SASAKI  Kazuhiro TANAKA  Tsuyoshi YAMAMOTO  Tadashi IKEUCHI  Kazunori MIURA  Mitsuhiro YANO  

     
    LETTER-Optoelectronic Packaging

      Vol:
    E80-C No:5
      Page(s):
    703-706

    This letter describes our DFB-LD module for use in WDM optical access networks. We realized an isolator-free DFB-LD module with a thermo-electric cooler in aim of stabilizing the emission wavelength for WDM systems. Silicon waferboard technology was employed to achieve simple assembly and small size of the module. This small size contributed to low TEC power. Our fabricated module demonstrated low-noise and stable emission wavelength characteristics under 156 Mbit/s pseudo random modulation.

281-300hit(320hit)