Sooyong JEONG Ajay Kumar JHA Youngsul SHIN Woo Jin LEE
Embedded software developers assume the behavior of the environment when specifications are not available. However, developers may assume the behavior incorrectly, which may result in critical faults in the system. Therefore, it is important to detect the faults caused by incorrect assumptions. In this letter, we propose a log-based testing approach to detect the faults. First, we create a UML behavioral model to represent the assumed behavior of the environment, which is then transformed into a state model. Next, we extract the actual behavior of the environment from a log, which is then incorporated in the state model, resulting in a state model that represents both assumed and actual behaviors. Existing testing techniques based on the state model can be used to generate test cases from our state model to detect faults.
Kaisei KAJITA Kazuto OGAWA Eiichiro FUJISAKI
We present a constant-size signature scheme under the CDH assumption. It has a tighter security reduction than any other constant-size signature scheme with a security reduction to solving some intractable search problems. Hofheinz, Jager, and Knapp (PKC 2012) presented a constant-size signature scheme under the CDH assumption with a reduction loss of O(q), where q is the number of signing queries. They also proved that the reduction loss of O(q) is optimal in a black-box security proof. To the best of our knowledge, no constant-size signature scheme has been proposed with a tighter reduction (to the hardness of a search problem) than that proposed by Hofheinz et al., even if it is not re-randomizable. We remark that our scheme is not re-randomizable. We achieve the reduction loss of O(q/d), where d is the number of group elements in a public key.
Lu TANG Zhigong WANG Tiantian FAN Faen LIU Changchun ZHANG
In this paper, an improved charge pump (CP) and a modified nonlinear phase frequency detector (PFD) are designed and fabricated in a 90-nm CMOS process. The CP is optimized with a combination of circuit techniques such as pedestal error cancel scheme to eliminate the charge injection and the other non-ideal characteristics. The nonlinear PFD is based on a modified circuit topology to enhance the acquisition capability of the PLL. The optimized CP and nonlinear PFD are integrated into a Ka-band PLL. The measured output current mismatch ratio of the improved CP is less than 1% when the output voltage Vout fluctuates between 0.2 to 1.1V from a 1.2V power supply. The measured phase error detection range of the modified nonlinear PFD is between -2π and 2π. Owing to the modified CP and PFD, the measured reference spur of the Ka-band PLL frequency synthesizer containing the optimized CP and PFD is only -56.409dBc at 30-GHz at the locked state.
Takayuki HATANAKA Takuji TACHIBANA
Energy consumption is one of the important issues in communication networks, and it is expected that network devices such as network interface cards will be turned off to decrease the energy consumption. Moreover, fast failure recovery is an important issue in large-scale communication networks to minimize the impact of failure on data transmission. In order to realize both low energy consumption and fast failure recovery, a method called LE-MRC (Low-Energy based Multiple Routing Configurations) has been proposed. However, LE-MRC can degrade network robustness because some links ports are turned off for reducing the energy consumption. Nevertheless, network robustness is also important for maintaining the performance of data transmission and the network functionality. In this paper, for realizing both low energy consumption and fast failure recovery while maintaining network robustness, we propose Robustness and Low-Energy based Multiple Routing Configurations (RLE-MRC). In RLE-MRC, some links are categorized into unnecessary links, and those links are turned off to lower the energy consumption. In particular, the number of excluded links is determined based on the network robustness. As a result, the energy consumption can be reduced so as not to degrade the network robustness significantly. Simulations are conducted on some network topologies to evaluate the performance of RLE-MRC. We also use ns-3 to evaluate how the performance of data transmission and network robustness are changed by using RLE-MRC. Numerical examples show that the low energy consumption and the fast failure recovery can be achieved while maintaining network robustness by using RLE-MRC.
Satoshi IMAMURA Eiji YOSHIDA Kazuichi OE
Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.
Hitoshi TAKESHITA Keiichi MATSUMOTO Hiroshi HASEGAWA Ken-ichi SATO Emmanuel Le Taillandier de GABORY
We realize a multicore erbium-doped fiber amplifier (MC-EDFA) with 2dB optical gain improvement (average) by recycling the residual 0.98μm pump light from the MC-EDF output. Eight-channel per core wavelength division multiplexed (WDM) Nyquist PM-16QAM optical signal amplification is demonstrated over a 40-minute period. Furthermore, we demonstrate the proposed MC-EDFA's stability by using it to amplify a Nyquist PM-16QAM signal and evaluating the resulting Q-factor variation. We found that our scheme contributes to reducing the total power consumption of MC-EDFAs in spatial division multiplexing (SDM)/WDM networks by up to 33.5%.
Hoang-Viet TRAN Ngoc Hung PHAM Viet Ha NGUYEN
Since software becomes more complex during its life cycle, the verification cost becomes higher, especially for such methods which are using model checking in general and assume-guarantee reasoning in specific. To address the problem of reducing the assume-guarantee verification cost, this paper presents a method to generate locally minimum and strongest assumptions for verification of component-based software. For this purpose, we integrate a variant of membership queries answering technique to an algorithm which considers candidate assumptions that are smaller and stronger first, larger and weaker later. Because the algorithm stops as soon as it reaches a conclusive result, the generated assumptions are the locally minimum and strongest ones. The correctness proof of the proposed algorithm is also included in the paper. An implemented tool, test data, and experimental results are presented and discussed.
Kota MUROI Hayato MASHIKO Yukihide KOHIRA
Due to progressing process technology, yield of chips is reduced by timing violation caused by delay variation of gates and wires in fabrication. Recently, post-silicon delay tuning, which inserts programmable delay elements (PDEs) into clock trees before the fabrication and adjusts the delays of the PDEs to recover the timing violation after the fabrication, is promising to improve the yield. Although post-silicon delay tuning improves the yield, it increases circuit area and power consumption since the PDEs are inserted. In this paper, a PDE structure is taken into consideration to reduce the circuit area and the power consumption. Moreover, a delay selection algorithm, and a clustering method, in which some PDEs are merged into a PDE and the PDE is inserted for multiple registers, are proposed to reduce the circuit area and the power consumption. In computational experiments, the proposed method reduced the circuit area and the power consumption in comparison with an existing method.
Takeshi KIMURA Yasuhiro OKAMURA Atsushi TAKADA
The influence of pump phase error on phase-sensitive optical amplifier (PSA) repeaters and the waveform degradation due to chromatic dispersion and fiber nonlinearities in the optical multi-relay transmission of quadrature phase-shift keying phase-conjugated twin waves are considered theoretically. First, the influence of noise from the pump phase error, optical local oscillator, receiver, and the amplified spontaneous-emission (ASE) in PSA repeaters is investigated with the assumption that transmission fibers are linear lossy channels. The bit-error rate (BER) is estimated as a function of the signal-to-noise ratio, and the relationship between the number of transmission relays and the fiber launch power is clarified. Waveform degradation due to chromatic dispersion and the optical fiber nonlinearities in transmission fibers are investigated with the noiseless condition, and the maximum repeatable number as a function of the fiber launch power is calculated. Finally, we show the relationship among the maximum repeatable number, standard deviation of pump phase error in PSA repeaters, and the fiber launch power to clarify the optimum transmission condition with consideration of the noise and the waveform degradation.
Seiji MIYOSHI Yoshinobu KAJIKAWA
We analyze the behaviors of the FXLMS algorithm using a statistical-mechanical method. The cross-correlation between a primary path and an adaptive filter and the autocorrelation of the adaptive filter are treated as macroscopic variables. We obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under the condition that the tapped-delay line is sufficiently long. The obtained equations are deterministic and closed-form. We analytically solve the equations to obtain the correlations and finally compute the mean-square error. The obtained theory can quantitatively predict the behaviors of computer simulations including the cases of both not only white but also nonwhite reference signals. The theory also gives the upper limit of the step size in the FXLMS algorithm.
Takuya HABARA Keiichi MIZUTANI Hiroshi HARADA
In this paper, we propose an IEEE 802.15.10-based layer 2 routing (L2R) method with a load balancing algorithm; the proposal considers fairness in terms of the cumulative number of sending packets at each terminal to resolve the packet concentration problem for the IEEE 802.15.4-based low-power consumption wireless smart utility network (Wi-SUN) systems. The proposal uses the accumulated sending times of each terminal as a weight in calculating each path quality metric (PQM) to decide multi-hopping routes with load balancing in the network. Computer simulation of the mesh network with 256 terminals shows that the proposed routing method can improve the maximum sending ratio (MSR), defined as the ratio of the maximum sending times to the average number of sending times in the network, by 56% with no degradation of the end-to-end communication success ratio (E2E-SR). The proposed algorithm is also experimentally evaluated by using actual Wi-SUN modules. The proposed routing method also improves the MSR by 84% with 70 terminals. Computer simulations and experiments prove the effectiveness of the proposed method in terms of load balancing.
Tadashi KAWAI Kensuke NAGANO Akira ENOKIHARA
This paper presents a lumped-element Wilkinson power divider (WPD) using LC-ladder circuits composed of a capacitor and an inductor, and a series LR/CR circuit. The proposed WPD has only seven elements. As a result of designing the divider based on an even/odd mode analysis technique, we theoretically show that broadband WPDs can be realized compared to lumped-element WPDs composed of Π/T-networks and an isolation resistor. By designing the WPD to match at two operating frequencies, the relative bandwidth of about 42% can be obtained. This value is larger than that of the conventional WPD based on the distributed circuit theory. Electromagnetic simulation and experiment are performed to verify the design procedure for the lumped-element WPD designed at a center frequency of 922.5MHz, and good agreement with both is shown.
Yaohui CHANG Chunhua GU Fei LUO Guisheng FAN Wenhao FU
Virtual Machine Placement (VMP) plays an important role in ensuring efficient resource provisioning of physical machines (PMs) and energy efficiency in Infrastructure as a Service (IaaS) data centers. Efficient server consolidation assisted by virtual machine (VM) migration can promote the utilization level of the servers and switch the idle PMs to sleep mode to save energy. The trade-off between energy and performance is difficult, because consolidation may cause performance degradation, even service level agreement (SLA) violations. A novel residual available capacity (RAC) resource model is proposed to resolve the VM selection and allocation problem from the cloud service provider (CSP) perspective. Furthermore, a novel heuristic VM selection policy for server consolidation, named Minimized Square Root available Resource (MISR) is proposed. Meanwhile, an efficient VM allocation policy, named Balanced Selection (BS) based on RAC is proposed. The effectiveness validation of the BS-MISR combination is conducted on CloudSim with real workloads from the CoMon project. Evaluation results of experiments show that the proposed combinationBS-MISR can significantly reduce the energy consumption, with an average of 36.35% compared to the Local Regression and Minimum Migration Time (LR-MMT) combination policy. Moreover, the BS-MISR ensures a reasonable level of SLAs compared to the benchmarks.
Haruki MARUOKA Masashi HIFUMI Jun FURUTA Kazutoshi KOBAYASHI
We propose a radiation-hardened Flip-Flop (FF) with stacked transistors based on the Adaptive Coupling Flip-Flop (ACFF) with low power consumption in a 65 nm FDSOI process. The slave latch in ACFF is much weaker against soft errors than the master latch. We design several FFs with stacked transistors in the master or slave latches to mitigate soft errors. We investigate radiation hardness of the proposed FFs by α particle and neutron irradiation tests. The proposed FFs have higher radiation hardness than a conventional DFF and ACFF. Neutron irradiation and α particle tests revealed no error in the proposed AC Slave-Stacked FF (AC_SS FF) which has stacked transistors only in the slave latch. We also investigate radiation hardness of the proposed FFs by heavy ion irradiation. The proposed FFs maintain higher radiation hardness up to 40 MeV-cm2/mg than the conventional DFF. Stacked inverters become more sensitive to soft errors by increasing tilt angles. AC_SS FF achieves higher radiation hardness than ACFF with the performance equivalent to that of ACFF.
Toshihiro KATASHITA Masakazu HIOKI Yohei HORI Hanpei KOIKE
Field-programmable gate array (FPGA) devices are applied for accelerating specific calculations and reducing power consumption in a wide range of areas. One of the challenges associated with FPGAs is reducing static power for enforcing their power effectiveness. We propose a method involving fine-grained reconfiguration of body biases of logic and net resources to reduce the static power of FPGA devices. In addition, we develop an FPGA device called Flex Power FPGA with SOTB technology and demonstrate its power reduction function with a 32-bit counter circuit. In this paper, we describe the construction of an experimental platform to precisely evaluate power consumption and the maximum operating frequency of the device under various operating voltages and body biases with various practical circuits. Using the abovementioned platform, we evaluate the Flex Power FPGA chip at operating voltages of 0.5-1.0 V and at body biases of 0.0-0.5 V. In the evaluation, we use a 32-bit adder, 16-bit multiplier, and an SBOX circuit for AES cryptography. We operate the chip virtually with uniformed body bias voltage to drive all of the logic resources with the same threshold voltage. We demonstrate the advantage of the Flex Power FPGA by comparing its performance with non-reconfigurable biasing.
Leiou WANG Donghui WANG Chengpeng HAO
SUMPLE, one of important signal combining approaches, its combining loss increases when a sensor in an array fails. A novel failure detection circuit for SUMPLE is proposed by using variability index. This circuit can effectively judge whether a sensor fails or not. Simulation results validate its effectiveness with respect to the existing algorithms.
Minoru KURIBAYASHI Nobuo FUNABIKI
The study of universal detector for fingerprinting code is strongly dependent on the design of scoring function. The optimal detector is known as MAP detector that calculates an optimal correlation score for a given single user's codeword. However, the knowledge about the number of colluders and their collusion strategy are inevitable. In this paper, we propose a new scoring function that equalizes the bias between symbols of codeword, which is called bias equalizer. We further investigate an efficient scoring function based on the bias equalizer under the relaxed marking assumption such that white Gaussian noise is added to a pirated codeword. The performance is compared with the MAP detector as well as some state-of-the-art scoring functions.
Xuechun WANG Yuan JI Wendong CHEN Feng RAN Aiying GUO
Hardware implementation of neural networks usually have high computational complexity that increase exponentially with the size of a circuit, leading to more uncertain and unreliable circuit performance. This letter presents a novel Radial Basis Function (RBF) neural network based on parallel fault tolerant stochastic computing, in which number is converted from deterministic domain to probabilistic domain. The Gaussian RBF for middle layer neuron is implemented using stochastic structure that reduce the hardware resources significantly. Our experimental results from two pattern recognition tests (the Thomas gestures and the MIT faces) show that the stochastic design is capable to maintain equivalent performance when the stream length set to 10Kbits. The stochastic hidden neuron uses only 1.2% hardware resource compared with the CORDIC algorithm. Furthermore, the proposed algorithm is very flexible in design tradeoff between computing accuracy, power consumption and chip area.
Muhammad ALFIAN AMRIZAL Atsuya UNO Yukinori SATO Hiroyuki TAKIZAWA Hiroaki KOBAYASHI
Coordinated checkpointing is a widely-used checkpoint/restart protocol for fault-tolerance in large-scale HPC systems. However, this protocol will involve massive amounts of I/O concentration, resulting in considerably high checkpoint overhead and high energy consumption. This paper focuses on speculative checkpointing, a CPR mechanism that allows for temporal distribution of checkpointings to avoid I/O concentration. We propose execution time and energy models for speculative checkpointing, and investigate energy-performance characteristics when speculative checkpointing is adopted in exascale systems. Using these models, we study the benefit of speculative checkpointing over coordinated checkpointing under various realistic scenarios for exascale HPC systems. We show that, compared to coordinated checkpointing, speculative checkpointing can achieve up to a 11% energy reduction at the cost of a relatively-small increase in the execution time. In addition, a significant energy-performance trade-off is expected when the system scale exceeds 1.2 million nodes.
Shunsuke YAGAI Masato OGUCHI Miyuki NAKANO Saneyasu YAMAGUCHI
In data centers, large numbers of computers are run simultaneously. These computers consume an enormous amount of energy. Several challenges related to this issue have been published. An energy-efficient storage management method that cooperates with applications was one effective approach. In this method, data and storage devices are managed using application support and the power consumption of storage devices is significantly decreased. However, existing studies do not take the virtualized environment into account. Recently, many data-intensive applications have been run in a virtualized environment, such as the cloud computing environment. In this paper, we focus on a virtualized environment wherein multiple virtual machines run on a physical computer and a data intensive application runs on each virtual machine. We discuss a method for reducing storage device power consumption using application support. First, we propose two storage management methods using application information. One method optimizes the inter-HDD file layout. This method removes frequently-accessed files from a certain HDD and switches the HDD to power-off mode. To balance loads and reduce seek distances, this method separates a heavily accessed file and consolidates files in a virtual machine with low access frequency. The other method optimizes the intra-HDD file layout, in addition to performing inter-HDD optimization. This method places frequently accessed files near each other. Second, we present our experimental results and demonstrate that the proposed methods can create sufficiently long HDD access intervals that power-off mode can be used, and thereby, reduce the power consumption of storage devices.