The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] diode(234hit)

21-40hit(234hit)

  • Characterization and Modeling of a GaAsSb/InGaAs Backward Diode on the Basis of S-Parameter Measurement Up to 67 GHz

    Shinpei YAMASHITA  Michihiko SUHARA  Kenichi KAWAGUCHI  Tsuyoshi TAKAHASHI  Masaru SATO  Naoya OKAMOTO  Kiyoto ASAKAWA  

     
    BRIEF PAPER

      Vol:
    E102-C No:6
      Page(s):
    462-465

    We fabricate and characterize a GaAsSb/InGaAs backward diode (BWD) toward a realization of high sensitivity zero bias microwave rectification for RF wave energy harvest. Lattice-matched p-GaAsSb/n-InGaAs BWDs were fabricated and their current-voltage (I-V) characteristics and S-parameters up to 67 GHz were measured with respect to several sorts of mesa diameters in μm order. Our theoretical model and analysis are well fitted to the measured I-Vs on the basis of WKB approximation of the transmittance. It is confirmed that the interband tunneling due to the heterojunction is a dominant transport mechanism to exhibit the nonlinear I-V around zero bias regime unlike recombination or diffusion current components on p-n junction contribute in large current regime. An equivalent circuit model of the BWD is clarified by confirming theoretical fitting for frequency dependent admittance up to 67 GHz. From the circuit model, eliminating the parasitic inductance component, the frequency dependence of voltage sensitivity of the BWD rectifier is derived with respect to several size of mesa diameter. It quantitatively suggests an effectiveness of mesa size reduction to enhance the intrinsic matched voltage sensitivity with increasing junction resistance and keeping the magnitude of I-V curvature coefficient.

  • InP-Based Photodetectors Monolithically Integrated with 90° Hybrid toward Over 400Gb/s Coherent Transmission Systems Open Access

    Hideki YAGI  Takuya OKIMOTO  Naoko INOUE  Koji EBIHARA  Kenji SAKURAI  Munetaka KUROKAWA  Satoru OKAMOTO  Kazuhiko HORINO  Tatsuya TAKEUCHI  Kouichiro YAMAZAKI  Yoshifumi NISHIMOTO  Yasuo YAMASAKI  Mitsuru EKAWA  Masaru TAKECHI  Yoshihiro YONEDA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    347-356

    We present InP-based photodetectors monolithically integrated with a 90° hybrid toward over 400Gb/s coherent transmission systems. To attain a wide 3-dB bandwidth of more than 40GHz for 400Gb/s dual-polarization (DP)-16-ary quadrature amplitude modulation (16QAM) and 600Gb/s DP-64QAM through 64GBaud operation, A p-i-n photodiode structure consisting of a GaInAs thin absorption and low doping n-typed InP buffer layers was introduced to overcome the trade-off between short carrier transit time and low parasitic capacitance. Additionally, this InP buffer layer contributes to the reduction of propagation loss in the 90° hybrid waveguide, that is, this approach allows a high responsivity as well as wide 3-dB bandwidth operation. The coherent receiver module for the C-band (1530nm - 1570nm) operation indicated the wide 3-dB bandwidth of more than 40GHz and the high receiver responsivity of more than 0.070A/W (Chip responsivity within the C-band: 0.130A/W) thanks to photodetectors with this photodiode design. To expand the usable wavelengths in wavelength-division multiplexing toward large-capacity optical transmission, the photodetector integrated with the 90° hybrid optimized for the L-band (1565nm - 1612nm) operation was also fabricated, and exhibited the high responsivity of more than 0.120A/W over the L-band. Finally, the InP-based monolithically integrated photonic device consisting of eight-channel p-i-n photodiodes, two 90° hybrids and a beam splitter was realized for the miniaturization of modules and afforded the reduction of the total footprint by 70% in a module compared to photodetectors with the 90° hybrid and four-channel p-i-n photodiodes.

  • High-Sensitivity Optical Receiver Using Differential Photodiodes AC-Coupled with a Transimpedance Amplifier

    Daisuke OKAMOTO  Hirohito YAMADA  

     
    PAPER-Optoelectronics

      Vol:
    E102-C No:4
      Page(s):
    380-387

    To address the bandwidth bottleneck that exists between LSI chips, we have proposed a novel, high-sensitivity receiver circuit for differential optical transmission on a silicon optical interposer. Both anodes and cathodes of the differential photodiodes (PDs) were designed to be connected to a transimpedance amplifier (TIA) through coupling capacitors. Reverse bias voltage was applied to each of the differential PDs through load resistance. The proposed receiver circuit achieved double the current signal amplitude of conventional differential receiver circuits. The frequency response of the receiver circuit was analyzed using its equivalent circuit, wherein the temperature dependence of the PD was implemented. The optimal load resistances of the PDs were determined to be 5kΩ by considering the tradeoff between the frequency response and bias voltage drop. A small dark current of the PD was important to reduce the voltage drop, but the bandwidth degradation was negligible if the dark current at room temperature was below 1µA. The proposed circuit achieved 3-dB bandwidths of 18.9 GHz at 25°C and 13.7 GHz at 85°C. Clear eye openings in the TIA output waveforms for 25-Gbps 27-1 pseudorandom binary sequence signals were obtained at both temperatures.

  • Fabrication and Evaluation of Integrated Photonic Array-Antenna System for RoF Based Remote Antenna Beam Forming

    Takayoshi HIRASAWA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E102-C No:3
      Page(s):
    235-242

    This paper studies the performance of the quantitative RF power variation in Radio-over-Fiber beam forming system utilizing a phased array-antenna integrating photo-diodes in downlink network for next generation millimeter wave band radio access. Firstly, we described details of fabrication of an integrated photonic array-antenna (IPA), where a 60GHz patch antenna 4×2 array and high-speed photo-diodes were integrated into a substrate. We evaluated RF transmission efficiency as an IPA system for Radio-over-Fiber (RoF)-based mobile front hall architecture with remote antenna beam forming capability. We clarified the characteristics of discrete and integrated devices such as an intensity modulator (IM), an optical fiber and the IPA and calculated RF power radiated from the IPA taking account of the measured data of the devices. Based on the experimental results on RF tone signal transmission by utilizing the IPA, attainable transmission distance of wireless communication by improvement and optimization of the used devices was discussed. We deduced that the antenna could output sufficient power when we consider that the cell size of the future mobile communication systems would be around 100 meters or smaller.

  • Influence of Polarity of Polarization Charge Induced by Spontaneous Orientation of Polar Molecules on Electron Injection in Organic Semiconductor Devices

    Yuya TANAKA  Takahiro MAKINO  Hisao ISHII  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    172-175

    On surfaces of tris-(8-hydroxyquinolate) aluminum (Alq) and tris(7-propyl-8-hydroxyquinolinato) aluminum (Al7p) thin-films, positive and negative polarization charges appear, respectively, owing to spontaneous orientation of these polar molecules. Alq is a typical electron transport material where electrons are injected from cathode. Because the polarization charge exists at the Alq/cathode interface, it is likely that it affects the electron injection process because of Coulomb interaction. In order to evaluate an impact of polarization charge on electron injection from cathode, electron only devices (EODs) composed of Alq or Al7p were prepared and evaluated by displacement current measurement. We found that Alq-EOD has lower resistance than Al7p-EOD, indicating that the positive polarization charge at Alq/cathode interface enhances the electron injection due to Coulomb attraction, while the electron injection is suppressed by the negative polarization charge at the Al7p/Al interface. These results clearly suggest that it is necessary to design organic semiconductor devices by taking polarization charge into account.

  • Patterning of OLED Glass Substrate for Improving Light Outcoupling Efficiency

    Savanna LLOYD  Tatsuya TANIGAWA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    180-183

    In this work, we have successfully patterned OLED glass substrates with a novel Yb-doped femtosecond laser. Such patterns can simultaneously increase the outcoupling efficiency up to 24.4%, as a result of reducing substrate waveguided light by scattering at the substrate/air interface and reduce the viewing angle dependence of the electroluminescent spectra.

  • Theoretical Analysis on Bit Error Rate of Visible-Light Variable N-Parallel Code-Shift-Keying

    Keisuke OSAWA  Hiromasa HABUCHI  Yusuke KOZAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2352-2358

    Lighting constrained visible-light communications are expected as indoor communications of next generation. In lighting constrained visible-light communications, lighting devices are used not only for illuminating rooms but also for optical wireless communications. For lighting constrained visible-light communications, we have been proposed a variable N-parallel code-shift-keying (VN-CSK) using a modified prime sequence code (MPSC). The VN-CSK system using MPSC has not only a suppression function for reducing co-channel interference from neighboring lighting devices, but also a function for keeping constant data transmission regardless of dimming control. In this paper, the bit error rate (BER) of the VN-CSK system using MPSC is derived under an indoor visible-light communication channel by theoretical analysis. Moreover, we evaluate the BER performance for the brightness level (dimming control stage).

  • 4.5-/4.9-GHz-Band Selective High-Efficiency GaN HEMT Power Amplifier by Characteristic Impedance Switching

    Kazuki MASHIMO  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    751-758

    A 4.5-/4.9-GHz band-selective GaN HEMT high-efficiency power amplifier has been designed and evaluated for next-generation wireless communication systems. An optimum termination impedance for each high-efficiency operation band was changed by using PIN diodes inserted into a harmonic treatment circuit at the output side. In order to minimize the influence of the insertion loss of the PIN diodes, an additional line is arranged in parallel with the open-ended stub used for second harmonic treatment, and the line and stub are connected with the PIN diodes to change the effective characteristic impedance. The fabricated GaN HEMT amplifier achieved a maximum power-added efficiency of 57% and 66% and a maximum drain efficiency of 62% and 70% at 4.6 and 5.0GHz, respectively, with a saturated output power of 38dBm, for each switched condition.

  • High Speed and High Responsivity Avalanche Photodiode Fabricated by Standard CMOS Process in Blue Wavelength Region Open Access

    Koichi IIYAMA  Takeo MARUYAMA  Ryoichi GYOBU  Takuya HISHIKI  Toshiyuki SHIMOTORI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    574-580

    Quadrant silicon avalanche photodiodes (APDs) were fabricated by standard 0.18µm CMOS process, and were characterized at 405nm wavelength for Blu-ray applications. The size of each APD element is 50×50µm2. The dark current was 10pA at low bias voltage, and low crosstalk of about -80dB between adjacent APD elements was achieved. Although the responsivity is less than 0.1A/W at low bias voltage, the responsivity is enhanced to more than 1A/W at less than 10V bias voltage due to avalanche amplification. The wide bandwidth of 1.5GHz was achieved with the responsivity of more than 1A/W, which is limited by the capacitance of the APD. We believe that the fabricated quadrant APD is a promising photodiode for multi-layer Blu-ray system.

  • Possibilities of Large Voltage Swing Hard-Type Oscillators Based on Series-Connected Resonant Tunneling Diodes

    Koichi MAEZAWA  Masayuki MORI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    305-310

    Hard-type oscillators for ultrahigh frequency applications were proposed based on resonant tunneling diodes (RTDs) and a HEMT trigger circuit. The hard-type oscillators initiate oscillation only after external excitation. This is advantageous for suppressing the spurious oscillation in the bias line, which is one of the most significant problems in the RTD oscillators. We first investigated a series-connected circuit of a resistor and an RTD for constructing a hard-type oscillator. We carried out circuit simulation using the practical device parameters. It was demonstrated that the stable oscillation can be obtained for such oscillators. Next, we proposed to use series-connected RTDs for the gain block of the hard-type oscillators. The series circuits of RTDs show the negative differential resistance in very narrow regions, or no regions at all, which makes impossible to use such circuits for the conventional soft-type oscillators. However, with the trigger circuit, they can be used for hard-type oscillators. We confirmed the oscillation and the bias stability of these oscillators, and also demonstrated that the voltage swing can be easily increased by increasing the number of RTDs connected in series. This is promising method to overcome the power restriction of the RTD oscillators.

  • A Pattern Reconfigurable Antenna with Broadband Circular Polarization

    Guiping JIN  Dan LIU  Miaolan LI  Yuehui CUI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1257-1261

    In this paper, a simple pattern reconfigurable antenna with broadband circular polarization is proposed. The proposed antenna consists of four rectangular loops, a feeding network and four reflectors. Circular polarization is achieved by cutting two slots on opposite sides of the loops. By controlling the states of the four PIN diodes present in the feeding network, the proposed antenna can achieve four different pattern modes at the same frequency. Experiments show that the antenna has a bandwidth of 47.6% covering 1.73-2.81GHz for reflection coefficient (|S11|)<-10dB and a bandwidth of 55% covering 1.62-2.85GHz for axial ratio <3dB. The average gain is 8.5dBi and the radiation patterns are stable.

  • Phase Locking and Frequency Tuning of Resonant-Tunneling-Diode Terahertz Oscillators

    Kota OGINO  Safumi SUZUKI  Masahiro ASADA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E101-C No:3
      Page(s):
    183-185

    Phase locking with frequency tuning is demonstrated for a resonant-tunneling-diode terahertz oscillator integrated with a biased varactor diode. The tuning range of oscillation frequency is 606-613GHz. The phase noise in the output of the oscillator is transformed to amplitude noise, and fed back to the varactor diode together with bias voltage. The spectral linewidth at least <2Hz was obtained at the oscillation frequencies tuned by the bias voltage of the varactor diode.

  • Photo-Diode Array Partitioning Problem for a Rectangular Region

    Kunihiro FUJIYOSHI  Takahisa IMANO  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2851-2856

    Photo Diode Array (PDA) is the key semiconductor component expected to produce specified output voltage in photo couplers and photo sensors when the light is on. PDA partitioning problem, which is to design PDA, is: Given die area, anode and cathode points, divide the area into N cells, with identical areas, connected in series from anode to cathode. In this paper, we first make restrictions for the problem and reveal the underlying properties of necessary and sufficient conditions for the existence of solutions when the restrictions are satisfied. Then, we propose a method to solve the problem using recursive algorithm, which can be guaranteed to obtain a solution in polynomial time.

  • Quantum Dot Light-Emitting Diode with Ligand-Exchanged ZnCuInS2 Quantum Dot Open Access

    Takeshi FUKUDA  Masatomo HISHINUMA  Junya MAKI  Hironao SASAKI  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    943-948

    Nowadays, semiconductor quantum dots have attracted intense attention as emissive materials for light-emitting diodes, due to their high photoluminescence quantum yield and the controllability of their photoluminescence spectrum by changing the core diameter. In general, semiconductor quantum dots contain large amounts of organic ligands around the core/shell structure to obtain dispersibility in solution, which leads to solution processability of the semiconductor quantum dot. Furthermore, organic ligands, such as straight alkyl chains, are generally insulating materials, which affects the carrier transport in thin-film light-emitting diodes. However, a detailed investigation has not been performed yet. In this paper, we investigated the luminance characteristics of quantum-dot light-emitting diodes containing ZnCuInS2 quantum dots with different carbon chain lengths of alkyl thiol ligands as emitting layers. By evaluating the CH2/CH3 ratio from Fourier-transform infrared spectra and thermal analysis, it was found that approximately half of the oleylamine ligands were converted to alkyl thiol ligands, and the evaporation temperature increased with increasing carbon chain length of the alkyl thiol ligands based on thermogravimetric analysis. However, the photoluminescence quantum yield and the spectral shape were almost the same, even after the ligand-exchange process from the oleylamine ligand to the alkyl thiol ligand. The peak wavelength of the photoluminescence spectra and the photoluminescence quantum yield were approximately 610 nm and 10%, respectively, for all samples. In addition, the surface morphology of spin coated ZnCuInS2 quantum-dot layers did not change after the ligand-exchange process, and the root-mean-square roughness was around 1 nm. Finally, the luminance efficiency of an inverted device structure increased with decreasing carbon chain length of the alkyl thiol ligands, which were connected around the ZnCuInS2 quantum dots. The maximum luminance and current efficiency were 86 cd/m2 and 0.083 cd/A, respectively.

  • First Demonstration of Mode Selective Active Multimode Interferometer Laser Diode

    Bingzhou HONG  Takuya KITANO  Haisong JIANG  Akio TAJIMA  Kiichi HAMAMOTO  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    775-781

    We newly propose the first lateral mode selective active multimode interferometer laser diode. The design principle is to arrange identical propagation path of different lateral mode. Thanks to multimode waveguide structure, 0th mode and 1st order mode has individual propagation path within one device. Individual lasing of fundamental mode as well as first mode was confirmed successfully.

  • Analysis of Relaxation Oscillation in a Resonant Tunneling Diode Integrated with a Bow-Tie Antenna

    Naoto OKUMURA  Kiyoto ASAKAWA  Michihiko SUHARA  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    430-438

    In general, tunnel diodes exhibit various types of oscillation mode: the sinusoidal mode or the nonsinusoidal mode which is known as the relaxation oscillation (RO) mode. We derive a condition for generating the RO in resonant tunneling diodes (RTDs) with essential components for equivalent circuit model. A conditional equation to obtain sufficient nonlinearity towards the robust RO is clarified. Moreover, its condition also can be applied in case of a bow-tie antenna integrated RTD, thus a design policy to utilize the RO region for the antenna integrated RTD is established by numerical evaluations of time-domain large-signal nonlinear analysis towards a terahertz transmitter for broadband wireless communications.

  • T-Shaped Probe Waveguide Antenna: A Wideband Reconfigurable Circular-Polarized Single-Port Antenna

    Naoto USAMI  Akira HIROSE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:5
      Page(s):
    490-495

    We propose a wideband reconfigurable circular-polarized single-port antenna to realize high-density linear integration for use in ground penetrating radars. We switch PIN diodes at a T-shaped probe to change its polarization. The forward- and reverse-biased probes work in cooperation to generate circular polarization. Experiments demonstrate the working bandwidths of 20.0% and 18.6% in the left- and right-hand polarization states, respectively, with 7.2 GHz center frequency. They are wider than those of conventional reconfigurable single-port circular-polarized antennas.

  • InP-Based Monolithic Integration Technologies for 100/200Gb/s Pluggable Coherent Transceivers Open Access

    Hideki YAGI  Yoshihiro YONEDA  Mitsuru EKAWA  Hajime SHOJI  

     
    INVITED PAPER

      Vol:
    E100-C No:2
      Page(s):
    179-186

    This paper reports dual-polarization In-phase and Quadrature (DP-IQ) modulators and photodetectors integrated with the 90° hybrid using InP-based monolithic integration technologies for 100/200Gb/s coherent transmission. The DP-IQ modulator was monolithically integrated with the Mach-Zehnder modulator array consisting of deep-ridge waveguides formed through dry etching and benzocyclobutene planarization processes. This DP-IQ modulator exhibited the low half-wavelength voltage (Vπ=1.5V) and the wide 3-dB bandwidth (f3dB > 28GHz). The photodetector monolithically integrated with the 90° hybrid consisting of multimode interference structures was realized by the butt-joint regrowth. A responsivity including total loss of 7.9dB in the waveguide was as high as 0.155A/W at a wavelength of 1550nm, and responsivity imbalance of the In-phase and Quadrature channels was less than ±0.5dB over the C-band. In addition, the low dark current (less than 500pA up to 85°C @ -3.0V) and the stable operation in the accelerated aging test (test condition: -5V at 175°C) over 5,000h were successfully achieved for the p-i-n-photodiode array with a buried heterostructure formed through the selective embedding regrowth. Finally, a receiver responsivity including intrinsic loss of 3dB in the polarization beam splitter was higher than 0.070A/W at a wavelength of 1550nm through the integration of the spot-size converter, and demodulation of 128Gb/s DP-QPSK and 224Gb/s DP-16QAM modulated signals was demonstrated for the compact coherent receiver using this photodetector integrated with the 90° hybrid. Therefore, we indicated that these InP-based monolithically integrated photonic devices are very useful for 100/200Gb/s pluggable coherent transceivers.

  • Blue/Green Selective Organic Photodiodes with Tandem Structure

    Kazuhiko SEGI  Shigeki NAKA  Hiroyuki OKADA  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    118-121

    Organic optical materials are possible to sense light because of its high photosensitivity and large absorption only 100 nm thick films. These characteristics can be applied to an optoelectronic device, such as an organic photodiode. In our previous report, we studied blue and green organic photodiode respectively. In this report, we investigated a tandem photodiode which was vertically stacked blue and green OPDs inserting intermediate semitransparent electrode. Individual photoresponse was confirmed in each blue/green unit.

  • Characterizing Silicon Avalanche Photodiode Fabricated by Standard 0.18µm CMOS Process for High-Speed Operation

    Zul Atfyi Fauzan Mohammed NAPIAH  Ryoichi GYOBU  Takuya HISHIKI  Takeo MARUYAMA  Koichi IIYAMA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E99-C No:12
      Page(s):
    1304-1311

    nMOS-type and pMOS-type silicon avalanche photodiodes (APDs) were fabricated by standard 0.18µm CMOS process, and the current-voltage characteristic and the frequency response of the APDs with and without guard ring structure were measured. The role of the guard ring is cancellation of photo-generated carriers in a deep layer and a substrate. The bandwidth of the APD is enhanced with the guard ring structure at a sacrifice of the responsivity. Based on comparison of nMOS-type and pMOS-type APDs, the nMOS-type APD is more suitable for high-speed operation. The bandwidth is enhanced with decreasing the spacing of interdigital electrodes due to decreased carrier transit time and with decreasing the detection area and the PAD size for RF probing due to decreased device capacitance. The maximum bandwidth was achieved with the avalanche gain of about 10. Finally, we fabricated a nMOS-type APD with the electrode spacing of 0.84µm, the detection area of 10×10µm2, the PAD size for RF probing of 30×30µm2, and with the guard ring structure. The maximum bandwidth of 8.4GHz was achieved along with the gain-bandwidth product of 280GHz.

21-40hit(234hit)