The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] diode(234hit)

161-180hit(234hit)

  • Analysis of Chaotic Phenomena in Two RC Phase Shift Oscillators Coupled by a Diode

    Yasuteru HOSOKAWA  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E84-A No:9
      Page(s):
    2288-2295

    In this paper, a simple chaotic circuit using two RC phase shift oscillators and a diode is proposed and analyzed. By using a simpler model of the original circuit, the mechanism of generating chaos is explained and the exact solutions are derived. The exact expression of the Poincare map and its Jacobian matrix make it possible to confirm the generation of chaos using the Lyapunov exponents and to investigate the related bifurcation phenomena.

  • Silicon Planar Esaki Diode Operating at Room Temperature

    Junji KOGA  Akira TORIUMI  

     
    PAPER

      Vol:
    E84-C No:8
      Page(s):
    1051-1055

    Negative differential conductance based on lateral interband tunnel effect is demonstrated in a planar degenerate p+-n+ diode (Esaki tunnel diode). The device is fabricated with the current silicon ultralarge scale integration (Si ULSI) process, paying attention to the processing damage so as to reduce an excess tunnel current that flows over some intermediate states in the tunnel junction. I-V characteristics at a low temperature clearly show an intrinsic electron transport, indicating phonon-assisted tunneling in Si as in the case of the previous Esaki diodes fabricated by the alloying method. In addition, a simple circuit function of bistable operation is demonstrated by connecting the planar Esaki diode with conventional Si metal-oxide-semiconductor field effect transistors (MOSFETs). The planar Esaki diode will be a promising device element in the functional library for enhancing the total system performance for the coming system-on-a-chip (SoC) era.

  • A K-Band MMIC Subharmonically Pumped Mixer Integrating Local Oscillator Amplifier with Low Spurious Output

    Yasushi SHIZUKI  Ken ONODERA  Kazuhiro ARAI  Masaaki ISHIDA  Shigeru WATANABE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E84-C No:4
      Page(s):
    433-442

    A K-band MMIC subharmonically pumped mixer integrating local oscillator (LO) amplifier has been developed. For up-converter application, it is necessary to reduce the leakage of second harmonic component of LO frequency to RF port, which is generated by nonlinear operation of LO amplifier. A quasi-lumped short-circuited stub using microstrip structure has been successfully applied to the MMIC mixer to enhance 2fLO-suppression. We propose a new configuration of a quasi-lumped short-circuited stub, which reduces the influence of parasitic elements of via-holes. The developed MMIC has a one-stage LO amplifier and it has shown about 10 dB-improvement of 2fLO-suppression compared to conventional configuration using a quarter-wavelength short-circuited stub.

  • Optimum Parameters and Viewing Areas of Stereoscopic Full-Color LED Display Using Parallax Barrier

    Hirotsugu YAMAMOTO  Syuji MUGURUMA  Takeshi SATO  Kasai ONO  Yoshio HAYASAKI  Yoshifumi NAGAI  Yoshinori SHIMIZU  Nobuo NISHIDA  

     
    PAPER

      Vol:
    E83-C No:10
      Page(s):
    1632-1639

    By using full-color light emitting diode (LED) panel, we have been studying a stereoscopic full-color large television in broad daylight. In order to implement stereoscopic large display for the general public, optimum parameters of display elements and parallax barrier and viewing areas of stereoscopic display using parallax barrier are discussed. Although stereoscopic display with parallax barrier permits the viewer to view stereoscopic images without any special glasses, its viewing area is restricted by crosstalk and disappearing of pixels. Enlarged viewing areas, which are derived from the small ratio of light emitting region to pixel and a proper aperture ratio of parallax barrier, are analyzed. A model of a viewer standing toward the display is proposed because the viewer apart from the horizontal center of the display turns to the center point of LED display and this turning causes a deviation of viewer's eye position. Then, the allowable number of viewing locations is derived on "no crosstalk" and "no disappearance" conditions. The optimum aperture ratio of parallax barrier and the width of light emitting region is obtained through the optimization. The viewing area obtained from the analysis is confirmed by experiments using full-color LED panel. Relations between viewing area and the moire fringes is also discussed. The depth of the viewing area agrees the viewing distance where no moire fringe appears. Furthermore, possibility of display for the crowds is discussed.

  • SCFL-Compatible 40-Gbit/s RTD/HEMT Selector Circuit

    Kimikazu SANO  Koichi MURATA  Hideaki MATSUZAKI  

     
    LETTER-Electronic Circuits

      Vol:
    E83-C No:10
      Page(s):
    1690-1692

    An SCFL-compatible 40-Gbit/s selector circuit using resonant tunneling diodes (RTDs) and high-electron-mobility transistors (HEMTs) is presented. The circuit comprises two monostable-bistable transition elements (MOBILEs) using RTDs, a HEMT NOR circuit, and a HEMT output buffer based on source-coupled-FET logic (SCFL). The circuit is fabricated by monolithically integrating RTDs and 0.1-µm HEMTs on an InP substrate. The fabricated circuit exhibits clear eye-opening at 40 Gbit/s with an output swing of 800 mVp-p, which is close to the conventional high-speed logic IC interface called SCFL.

  • Simulation of Multi-Band Quantum Transport Reflecting Realistic Band Structure

    Matsuto OGAWA  Takashi SUGANO  Ryuichiro TOMINAGA  Tanroku MIYOSHI  

     
    PAPER-Device Modeling and Simulation

      Vol:
    E83-C No:8
      Page(s):
    1235-1241

    Simulation of multi-band quantum transport based on a non-equilibrium Green's functions is presented in resonant tunneling diodes (RTD's), where realistic band structures and space charge effect are taken into account. To include realistic band structure, we have used a multi-band (MB) tight binding method with an sp3s* hybridization. As a result, we have found that the multiband nature significantly changes the results of conventional RTD simulations specifically for the case with indirect-gap barriers.

  • Enhanced Electroluminescence in Organic Light-Emitting Diodes Utilizing Co-doped Emissive Layer for Red Light Emission

    Takumi SAWATANI  Yutaka OHMORI  Katsumi YOSHINO  

     
    PAPER-Electro Luminescence

      Vol:
    E83-C No:7
      Page(s):
    1022-1025

    We demonstrate unique dye-doping method to realize organic light emitting diodes (OLED) with high efficiency, high brightness and pure red emission. In this study, we used 5,10,15,20 tetraphenyl -21H,23H-porphine (TPP) as emitting dopant into 8-hydroxyquinoline aluminum (Alq3) emissive layer. To improve turn-on voltage and emission characteristics, a sufficient amount of 4-(dicyano methylene) -2-methyl -6-(p-dimethyl aminostyryl) -4H-pyran (DCM) was added to the TPP doped Alq3 emissive layer. The mechanisms and the emission characteristics of the co-doped EL device are discussed using energy band diagram of the materials used in the device.

  • Red EL Properties of OLED Having Hole Blocking Layer

    Hyeong-Gweon KIM  Tatsuo MORI  Teruyoshi MIZUTANI  Duck-Chool LEE  

     
    PAPER-Electro Luminescence

      Vol:
    E83-C No:7
      Page(s):
    1012-1016

    In this study, we prepared red organic light- emitting-diode (OLED) with a fluorescent dye(Sq)-doped and inserted 1,3-bis (5-p-t-butylphenyl)-1,3,4-oxadiazol-2-yl) benzene (OXD7) or/and tris (8-hydroxyquinoline) aluminum (Alq3) layers between emission layer and cathode in order to increase electroluminescent (EL) efficiency. This inserting effect has been observed and EL mechanism characteristics have been examined. The hole transport layer was N,N'-diphenyl-N, N'bis-(3-methylphenyl)-1,1'diphenyl-4,4'-diamine (TPD); the host material of emission layer was Alq3; the guest material of emission layer was Sq. When Alq3 was inserted between the emission layer and the cathode, emission efficiency increased. Highly pure red emission, however, was not attaina ble with Alq3. On the other hand, the insertion of OXD7 between the two layers blocked and accumulated holes. Because of its increasing recombination probability of electron and hole, luminance characteristics and emission efficiency were improved with holding highly pure red color.

  • Numerical Analysis of Beam-Expanders Integrated with Laser Diodes

    Makoto TAKAHASHI  Tsukuru OHTOSHI  Masahiro AOKI  Hiroshi SATO  Shinji TSUJI  Kazuhisa UOMI  Ken NAONO  

     
    PAPER-Semiconductor Lasers

      Vol:
    E83-C No:6
      Page(s):
    845-854

    Waveguide characteristics of beam-expanders integrated with laser diodes were numerically analyzed by the beam propagation method (BPM) or the finite-difference time-domain (FD-TD) method. It was demonstrated that the vertically and horizontally hybrid tapered structure or an optimized refractive index in the cladding layer improve the trade-off relationship between fiber coupling efficiency and lasing characteristics. It was also demonstrated that exponentially tapering stripe width can reduce device length without sacrificing device properties.

  • Spot-Size-Converter Integrated Laser Diode with Waveguide Width Abruptly Expanded Structure

    Hiroyuki YAMAZAKI  Yuji FURUSHIMA  Yasutaka SAKATA  Yuichiro OKUNUKI  Yoshihiro SASAKI  Keiro KOMATSU  

     
    PAPER-Semiconductor Lasers

      Vol:
    E83-C No:6
      Page(s):
    838-844

    We propose a device called the Waveguide width abruptly EXpanded Spot-Size-Converter integrated Laser Diode (WEX-SSC-LD) that has been designed to improve lasing characteristics by achieving a steep photoluminescence wavelength change along the cavity. The waveguide parameter was optimized by a three-dimensional beam propagation method to reduce mode conversion and absorption losses. The WEX-SSC-LD's showed superior lasing characteristics such as threshold currents of 5.8 mA at 25C and 19 mA at 85C and operation current of 57.5 mA at an output power of 10 mW for 85C. These excellent lasing characteristics were achieved due to the steeper bandgap-energy shift in the SSC section near the LD section side by introducing the WEX-SSC structure as well as the high-quality MQW active layer grown by selective MOVPE and the precisely controlled pn-pn current blocking structure. The coupling loss to normal single-mode fiber was as low as 1.8 dB while maintaining a large coupling tolerance of 1.8 µm. These excellent coupling characteristics are very promising for passively aligned optical modules.

  • Stabilization and Timing Jitter Reduction of 160 GHz Colliding-Pulse Mode-Locked Laser Diode by Subharmonic-Frequency Optical Pulse Injection

    Shin ARAHIRA  Yukio KATOH  Daisuke KUNIMATSU  Yoh OGAWA  

     
    PAPER-High-Speed Optical Devices

      Vol:
    E83-C No:6
      Page(s):
    966-973

    A 160 GHz colliding-pulse mode-locked laser diode (CPM-LD) was stabilized by injection of a stable master laser pulse train repeated at a 16th-subharmonic-frequency (9.873 GHz) of the CPM-LD's mode-locking frequency. Synchroscan steak camera measurements revealed a clear pulse train with 16-times repetition frequency of the master laser pulse train for the stabilized CPM-LD output, indicating that CPM-LD output was synchronized to the master laser and that the timing jitter was also reduced. The timing jitter of the stabilized CPM-LD was quantitatively evaluated by an all-optical down converting technique using the nonlinearity of optical fiber. This technique is simple and has a wider bandwidth in comparison to a conventional technique, making it possible to accurately measure the phase noise of ultrafast optical pulse train when its repetition frequency exceeds 100 GHz. The electrical power spectra measurements indicated that the CPM-LD's mode-locking frequency was exactly locked by the injection of the master laser pulse train and that the timing jitter decreased as the injection power increased. The timing jitter was reduced from 2.2 ps in free running operation to 0.26 ps at an injection power of 57 mW, comparable to that of the master laser (0.21 ps).

  • Design of High Slope-Efficiency Phase-Shifted DFB Laser Diodes with Asymmetrically-Pitch-Modulated (APM) Gratings

    Kenji SATO  Yoshiharu MUROYA  Tetsuro OKUDA  

     
    PAPER-Semiconductor Lasers

      Vol:
    E83-C No:6
      Page(s):
    855-859

    A theoretical study on high slope-efficiency phase-shifted DFB laser diodes is presented. We have proposed a new grating structure called asymmetrically-pitch-modulated (APM) grating, and calculated its slope- efficiency and single-mode-yield. In order to take into account the modulated grating period; we have developed an F-matrix which directly includes a chirped grating structure. APM phase-shifted DFB laser diodes consist of a uniform grating in one half section of the cavity and a chirped grating in the other half. This structure causes asymmetrical field distribution inside the cavity and the optical output power from one facet is larger than that from the other facet. According to the simulation results, when the normalized coupling coefficient κ L is 3.0, the front-to-rear output power ratio is 2.6, while the single-mode-yield remains at 100%, and simultaneously the slope-efficiency improvement becomes 65% better than that of ordinary quarter-wave phase-shifted DFB lasers of the same κ L value.

  • 10-Gbit/s InP-Based High-Performance Monolithic Photoreceivers Consisting of p-i-n Photodiodes and HEMT's

    Kiyoto TAKAHATA  Yoshifumi MURAMOTO  Kazutoshi KATO  Yuji AKATSU  Atsuo KOZEN  Yuji AKAHORI  

     
    PAPER-High-Speed Optical Devices

      Vol:
    E83-C No:6
      Page(s):
    950-958

    10-Gbit/s monolithic receiver OEIC's for 1.55-µm optical transmission systems were fabricated using a stacked layer structure of p-i-n photodiodes and HEMT's grown on InP substrates by single-step MOVPE. A receiver OEIC with a large O/E conversion factor was obtained by adding a three-stage differential amplifier to a conventional feedback amplifier monolithically integrated with a surface-illuminated p-i-n photodiode. The circuit configuration gave a preamplifier a transimpedance of 60 dBΩ. The receiver OEIC achieved error-free operation at 10 Gbit/s without a postamplifier even with the optical input as low as -10.3 dBm because of its large O/E conversion factor of 890 V/W. A two-channel receiver OEIC array for use in a 10-Gbit/s parallel photoreceiver module based on a PLC platform was made by monolithically integrating multimode WGPD's with HEMT preamplifiers. The side-illuminated structure of the WGPD is suitable for integration with other waveguide-type optical devices. The receiver OEIC arrays were fabricated on a 2-inch wafer with achieving excellent uniformity and a yield over 90%: average transimpedance and average 3-dB-down bandwidth were 43.8 dBΩ and 8.0 GHz. The two channels in the receiver OEIC array also showed sensitivities of -16.1 dBm and -15.3 dBm at 10 Gbit/s. The two-channel photoreceiver module was constructed by assembling the OEIC array on a PLC platform. The frequency response of the module was almost the same as that of the OEIC chip and the crosstalk between channels in the module was better than -27 dB in the frequency range below 6 GHz. These results demonstrate the feasibility of using our receiver OEIC's in various types of optical receiver systems.

  • InP/InGaAs Uni-Traveling-Carrier Photodiodes

    Tadao ISHIBASHI  Tomofumi FURUTA  Hiroshi FUSHIMI  Satoshi KODAMA  Hiroshi ITO  Tadao NAGATSUMA  Naofumi SHIMIZU  Yutaka MIYAMOTO  

     
    INVITED PAPER-High-Speed Optical Devices

      Vol:
    E83-C No:6
      Page(s):
    938-949

    This paper reviews the operation, design, and performance of the uni-traveling-carrier-photodiode (UTC-PD). The UTC-PD is a new type of photodiode that uses only electrons as its active carriers and its prime feature is high current operation. A small signal analysis predicts that a UTC-PD can respond to an optical signal as fast as or faster than a pin-PD. A comparison of measured pulse photoresponse data reveals how the saturation mechanisms of the UTC-PD and pin-PD differ. Applications of InP/InGaAs UTC-PDs as optoelectronic drivers are also presented.

  • Current-Writing Active-Matrix Circuit for Organic Light-Emitting Diode Display Using a-Si:H Thin-Film-Transistors

    Reiji HATTORI  Tsutomu TSUKAMIZU  Ryusuke TSUCHIYA  Kazunori MIYAKE  Yi HE  Jerzy KANICKI  

     
    LETTER-Electronic Displays

      Vol:
    E83-C No:5
      Page(s):
    779-782

    In this letter, we describe a four thin-film-transistor (TFT) pixel circuit based on hydrogenated amorphous silicon (a-Si:H) technology for the active-matrix organic light-emitting diode (AMOLED) display applications. The circuit uses current-writing mechanism and can automatically adjust the threshold-voltage shifts of both the organic light-emitting diodes (OLEDs) and the TFTs induced by the circuit aging or process variations. Experimental results indicate virtually no variation of the output driving current after long-term bias-temperature-stress (BTS).

  • Distributed Feedback Laser Diodes Employing Embedded Dielectric Gratings Located above the Active Region

    Amber C. ABARE  Steven P. DENBAARS  Larry A. COLDREN  

     
    INVITED PAPER

      Vol:
    E83-C No:4
      Page(s):
    560-563

    Laser diodes in the (Al, Ga, In) N system are attractive for many applications. Due to the wurtzite crystal structure, cleaved facets are not easily produced. We have investigated distributed feedback (DFB) laser diodes employing embedded dielectric gratings with the grating located above the active region. The dielectric gratings are incorporated via epitaxial lateral overgrowth. The DFB laser diodes had reduced threshold current densities over the etched cavity devices, with a minimum of 15 kA/cm2. The spectral emission width was considerably reduced for the DFB devices. Voltages for the DFB devices were high due to the presence of the Si3N4 grating within the p-type material.

  • Continuous Wave Operation of InGaN Laser Diodes Fabricated on SiC Substrates

    Akito KURAMATA  Shin-ichi KUBOTA  Reiko SOEJIMA  Kay DOMEN  Kazuhiko HORINO  Peter HACKE  Toshiyuki TANAHASHI  

     
    INVITED PAPER

      Vol:
    E83-C No:4
      Page(s):
    546-551

    We introduce the characteristics for continuous wave operation at room temperature of InGaN laser diodes fabricated on SiC substrates. The threshold current was 60 mA, the threshold voltage was 8.3 V, and the oscillation wavelength was 404.4 nm. The lifetime of the laser diodes with a constant light output of 1 mW at 25 was 57 hours. The heat dissipation of the devices mounted p-side-up on a stem without using a heat sink was shown to be as good as that of devices mounted p-side-down with an external heat sink, owing to the high thermal conductivity of SiC substrates.

  • Cubic GaN Light Emitting Diode Grown by Metalorganic Vapor-Phase Epitaxy

    Hidenao TANAKA  Atsushi NAKADAIRA  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    585-590

    We studied Si and Mg doping characteristics in cubic GaN and fabricated a light emitting diode of cubic GaN on a GaAs substrate by metalorganic vapor-phase epitaxy. The diode structure consisted of undoped and Mg-doped GaN stacking layers deposited on Si-doped GaN and AlGaN layers. The electron-beam-induced-current signal and current injection characteristics of this diode structure were measured. There was a peak at the interface between the Mg-doped and undoped GaN in the electron-beam-induced-current signal. This shows successful growth of the p-n junction. Light emitting operation was achieved by currents injected through the conducting GaAs substrate of this diode at room temperature. We observed electroluminescence below the bandgap energy of cubic GaN with a peak at 2.6 eV.

  • Investigations on Strained AlGaN/GaN/Sapphire and GaInN Multi-Quantum-Well Surface LEDs Using AlGaN/GaN Bragg Reflectors

    Hiroyasu ISHIKAWA  Naoyuki NAKADA  Masaharu NAKAJI  Guang-Yuan ZHAO  Takashi EGAWA  Takashi JIMBO  Masayoshi UMENO  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    591-597

    Investigations were carried out on metalorganic-chemical-vapor-deposition (MOCVD)-grown strained AlGaN/ GaN/sapphire structures using X-ray diffratometry. While AlGaN with lower AlN molar fraction (< 0.1) is under the in-plane compressive stress, it is under the in-plane tensile stress with high AlN molar fraction (> 0.1). Though tensile stress caused the cracks in AlGaN layer with high AlN molar fraction, we found that the cracks dramatically reduced when the GaN layer quality was not good. Using this technique, we fabricated a GaInN multi-quantum-well (MQW) surface emitting diodes were fabricated on 15 pairs of AlGaN/GaN distributed Bragg reflector (DBR) structures. The reflectivity of 15 pairs of AlGaN/GaN DBR structure has been shown as 75% at 435 nm. Considerably higher output power (1.5 times) has been observed for DBR based GaInN MQW LED when compared with non-DBR based MQW structures.

  • Theoretical Analysis of Optical Transverse-Mode Control on GaN-Based Laser Diodes

    Toshiyuki SATO  Motoaki IWAYA  Kimio ISOMURA  Tsutomu UKAI  Satoshi KAMIYAMA  Hiroshi AMANO  Isamu AKASAKI  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    573-578

    Optical transverse-mode properties of the GaN-based semiconductor laser-diode is characterized by effective refractive index method. In order to stabilize a transverse-mode in the conventional ridge-waveguide structure, very precise control of ridge-height is found to be necessary. On the contrary, a novel 2-step grown structure with 2-dimensional index guiding has wide feasibility for device parameter, excellent stability of large confinement factor in transverse-mode, and small aspect ratio of beam divergence, under the condition that AlN molar fraction of 0.08 in AlGaN current blocking layer and stripe width of 1.5 µm are used.

161-180hit(234hit)