The search functionality is under construction.

Keyword Search Result

[Keyword] low(1931hit)

1-20hit(1931hit)

  • RAN Slicing with Inter-Cell Interference Control and Link Adaptation for Reliable Wireless Communications Open Access

    Yoshinori TANAKA  Takashi DATEKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E107-B No:7
      Page(s):
    513-528

    Efficient multiplexing of ultra-reliable and low-latency communications (URLLC) and enhanced mobile broadband (eMBB) traffic, as well as ensuring the various reliability requirements of these traffic types in 5G wireless communications, is becoming increasingly important, particularly for vertical services. Interference management techniques, such as coordinated inter-cell scheduling, can enhance reliability in dense cell deployments. However, tight inter-cell coordination necessitates frequent information exchange between cells, which limits implementation. This paper introduces a novel RAN slicing framework based on centralized frequency-domain interference control per slice and link adaptation optimized for URLLC. The proposed framework does not require tight inter-cell coordination but can fulfill the requirements of both the decoding error probability and the delay violation probability of each packet flow. These controls are based on a power-law estimation of the lower tail distribution of a measured data set with a smaller number of discrete samples. As design guidelines, we derived a theoretical minimum radio resource size of a slice to guarantee the delay violation probability requirement. Simulation results demonstrate that the proposed RAN slicing framework can achieve the reliability targets of the URLLC slice while improving the spectrum efficiency of the eMBB slice in a well-balanced manner compared to other evaluated benchmarks.

  • Investigating the Efficacy of Partial Decomposition in Kit-Build Concept Maps for Reducing Cognitive Load and Enhancing Reading Comprehension Open Access

    Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2024/01/11
      Vol:
    E107-D No:5
      Page(s):
    714-727

    This study investigates the efficacy of a partial decomposition approach in concept map recomposition tasks to reduce cognitive load while maintaining the benefits of traditional recomposition approaches. Prior research has demonstrated that concept map recomposition, involving the rearrangement of unconnected concepts and links, can enhance reading comprehension. However, this task often imposes a significant burden on learners’ working memory. To address this challenge, this study proposes a partial recomposition approach where learners are tasked with recomposing only a portion of the concept map, thereby reducing the problem space. The proposed approach aims at lowering the cognitive load while maintaining the benefits of traditional recomposition task, that is, learning effect and motivation. To investigate the differences in cognitive load, learning effect, and motivation between the full decomposition (the traditional approach) and partial decomposition (the proposed approach), we have conducted an experiment (N=78) where the participants were divided into two groups of “full decomposition” and “partial decomposition”. The full decomposition group was assigned the task of recomposing a concept map from a set of unconnected concept nodes and links, while the partial decomposition group worked with partially connected nodes and links. The experimental results show a significant reduction in the embedded cognitive load of concept map recomposition across different dimensions while learning effect and motivation remained similar between the conditions. On the basis of these findings, educators are recommended to incorporate partially disconnected concept maps in recomposition tasks to optimize time management and sustain learner motivation. By implementing this approach, instructors can conserve cognitive resources and allocate saved energy and time to other activities that enhance the overall learning process.

  • Traffic Reduction for Speculative Video Transmission in Cloud Gaming Systems Open Access

    Takumasa ISHIOKA  Tatsuya FUKUI  Toshihito FUJIWARA  Satoshi NARIKAWA  Takuya FUJIHASHI  Shunsuke SARUWATARI  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E107-B No:5
      Page(s):
    408-418

    Cloud gaming systems allow users to play games that require high-performance computational capability on their mobile devices at any location. However, playing games through cloud gaming systems increases the Round-Trip Time (RTT) due to increased network delay. To simulate a local gaming experience for cloud users, we must minimize RTTs, which include network delays. The speculative video transmission pre-generates and encodes video frames corresponding to all possible user inputs and sends them to the user before the user’s input. The speculative video transmission mitigates the network, whereas a simple solution significantly increases the video traffic. This paper proposes tile-wise delta detection for traffic reduction of speculative video transmission. More specifically, the proposed method determines a reference video frame from the generated video frames and divides the reference video frame into multiple tiles. We calculate the similarity between each tile of the reference video frame and other video frames based on a hash function. Based on calculated similarity, we determine redundant tiles and do not transmit them to reduce traffic volume in minimal processing time without implementing a high compression ratio video compression technique. Evaluations using commercial games showed that the proposed method reduced 40-50% in traffic volume when the SSIM index was around 0.98 in certain genres, compared with the speculative video transmission method. Furthermore, to evaluate the feasibility of the proposed method, we investigated the effectiveness of network delay reduction with existing computational capability and the requirements in the future. As a result, we found that the proposed scheme may mitigate network delay by one to two frames, even with existing computational capability under limited conditions.

  • Investigation and Improvement on Self-Dithered MASH ΔΣ Modulator for Fractional-N Frequency Synthesis Open Access

    Yuyang ZHU  Zunsong YANG  Masaru OSADA  Haoming ZHANG  Tetsuya IIZUKA  

     
    LETTER

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:5
      Page(s):
    746-750

    Self-dithered digital delta-sigma modulators (DDSMs) are commonly used in fractional-N frequency synthesizers due to their ability to eliminate unwanted spurs from the synthesizer’s spectra without requiring additional hardware. However, when operating with a low-bit input, self-dithered DDSMs can still suffer from spurious tones at certain inputs. In this paper, we propose a self-dithered MASH 1-1-1-1 structure to mitigate the spur issue in the self-dithered MASH DDSMs. The proposed self-dithered MASH 1-1-1-1 suppresses the spurs with shaped dithering and achieves 4th order noise shaping.

  • High-Density Knapsack Cryptosystem Using Shifted-Odd and Super-Increasing Sequence

    Minami SATO  Sosuke MINAMOTO  Ryuichi SAKAI  Yasuyuki MURAKAMI  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2023/08/04
      Vol:
    E107-A No:3
      Page(s):
    519-522

    It is proven that many public-key cryptosystems would be broken by the quantum computer. The knapsack cryptosystem which is based on the subset sum problem has the potential to be a quantum-resistant cryptosystem. Murakami and Kasahara proposed a SOSI trapdoor sequence which is made by combining shifted-odd (SO) and super-increasing (SI) sequence in the modular knapsack cryptosystem. This paper firstly show that the key generation method could not achieve a secure density against the low-density attack. Second, we propose a high-density key generation method and confirmed that the proposed scheme is secure against the low-density attack.

  • Online Job Scheduling with K Servers

    Xuanke JIANG  Sherief HASHIMA  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER

      Pubricized:
    2023/11/15
      Vol:
    E107-D No:3
      Page(s):
    286-293

    In this paper, we investigate an online job scheduling problem with n jobs and k servers, where the accessibilities between the jobs and the servers are given as a bipartite graph. The scheduler is tasked with minimizing the regret, defined as the difference between the total flow time of the scheduler over T rounds and that of the best-fixed scheduling in hindsight. We propose an algorithm whose regret bounds are $O(n^2 sqrt{Tln (nk)})$ for general bipartite graphs, $O((n^2/k^{1/2}) sqrt{Tln (nk)})$ for the complete bipartite graphs, and $O((n^2/k) sqrt{T ln (nk)}$ for the disjoint star graphs, respectively. We also give a lower regret bound of $Omega((n^2/k) sqrt{T})$ for the disjoint star graphs, implying that our regret bounds are almost optimal.

  • Lightweight and Fast Low-Light Image Enhancement Method Based on PoolFormer

    Xin HU  Jinhua WANG  Sunhan XU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/10/05
      Vol:
    E107-D No:1
      Page(s):
    157-160

    Images captured in low-light environments have low visibility and high noise, which will seriously affect subsequent visual tasks such as target detection and face recognition. Therefore, low-light image enhancement is of great significance in obtaining high-quality images and is a challenging problem in computer vision tasks. A low-light enhancement model, LLFormer, based on the Vision Transformer, uses axis-based multi-head self-attention and a cross-layer attention fusion mechanism to reduce the complexity and achieve feature extraction. This algorithm can enhance images well. However, the calculation of the attention mechanism is complex and the number of parameters is large, which limits the application of the model in practice. In response to this problem, a lightweight module, PoolFormer, is used to replace the attention module with spatial pooling, which can increase the parallelism of the network and greatly reduce the number of model parameters. To suppress image noise and improve visual effects, a new loss function is constructed for model optimization. The experiment results show that the proposed method not only reduces the number of parameters by 49%, but also performs better in terms of image detail restoration and noise suppression compared with the baseline model. On the LOL dataset, the PSNR and SSIM were 24.098dB and 0.8575 respectively. On the MIT-Adobe FiveK dataset, the PSNR and SSIM were 27.060dB and 0.9490. The evaluation results on the two datasets are better than the current mainstream low-light enhancement algorithms.

  • Resource Allocation for Mobile Edge Computing System Considering User Mobility with Deep Reinforcement Learning

    Kairi TOKUDA  Takehiro SATO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    173-184

    Mobile edge computing (MEC) is a key technology for providing services that require low latency by migrating cloud functions to the network edge. The potential low quality of the wireless channel should be noted when mobile users with limited computing resources offload tasks to an MEC server. To improve the transmission reliability, it is necessary to perform resource allocation in an MEC server, taking into account the current channel quality and the resource contention. There are several works that take a deep reinforcement learning (DRL) approach to address such resource allocation. However, these approaches consider a fixed number of users offloading their tasks, and do not assume a situation where the number of users varies due to user mobility. This paper proposes Deep reinforcement learning model for MEC Resource Allocation with Dummy (DMRA-D), an online learning model that addresses the resource allocation in an MEC server under the situation where the number of users varies. By adopting dummy state/action, DMRA-D keeps the state/action representation. Therefore, DMRA-D can continue to learn one model regardless of variation in the number of users during the operation. Numerical results show that DMRA-D improves the success rate of task submission while continuing learning under the situation where the number of users varies.

  • Consideration of Integrated Low-Frequency Low-Pass Notch Filter Employing CCII Based Capacitance Multipliers

    Fujihiko MATSUMOTO  Hinano OHTSU  

     
    LETTER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    114-118

    In a field of biomedical engineering, not only low-pass filters for high frequency elimination but also notch filters for suppressing powerline interference are necessary to process low-frequency biosignals. For integration of low-frequency filters, chip implementation of large capacitances is major difficulty. As methods to enhance capacitances with small chip area, use of capacitance multipliers is effective. This letter describes design consideration of integrated low-frequency low-pass notch filter employing capacitance multipliers. Two main points are presented. Firstly, a new floating capacitance multiplier is proposed. Secondly, a technique to reduce the number of capacitance multipliers is proposed. By this technique, power consumption is reduced. The proposed techniques are applied a 3rd order low-pass notch filter. Simulation results show the effectiveness of the proposed techniques.

  • Low-Complexity Digital Channelizer Design for Software Defined Radio

    Jinguang HAO  Gang WANG  Honggang WANG  Lili WANG  Xuefeng LIU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    134-140

    In software defined radio systems, a channelizer plays an important role in extracting the desired signals from a wideband signal. Compared to the conventional methods, the proposed scheme provides a solution to design a digital channelizer extracting the multiple subband signals at different center frequencies with low complexity. To do this, this paper formulates the problem as an optimization problem, which minimizes the required multiplications number subject to the constraints of the ripple in the passbands and the stopbands for single channel and combined multiple channels. In addition, a solution to solve the optimization problem is also presented and the corresponding structure is demonstrated. Simulation results show that the proposed scheme requires smaller number of the multiplications than other conventional methods. Moreover, unlike other methods, this structure can process signals with different bandwidths at different center frequencies simultaneously only by changing the status of the corresponding multiplexers without hardware reimplementation.

  • Performance Evaluation and Demonstration of Real-Time Vehicle Control Information Exchange Using 5G New Radio Sidelink for Automated Follower Truck Platooning Open Access

    Manabu MIKAMI  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    85-93

    Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries that are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicle-to-Everything (V2X) communications for platooning are considered to be one of new 5G use cases whose ultra reliable and low latency communication (URLLC) aspects are required. The authors build a field experimental environment, towards application to truck platooning, with actual large-size trucks and a prototype system, for 5G New Radio (NR) technology based V2X communications. Its most distinctive feature is that the 5G NR-V2X prototype system is equipped with UE-to-UE radio interface (i.e., sidelink) for V2V Direct communication, in addition to the traditional radio interfaces between BS and UE for V2N/V2N2V communications. This paper presents performance evaluation and demonstration of real-time vehicle control information exchange using over the sidelink of 5G NR-V2X prototype system for automated follower truck platooning. This paper evaluates the V2V Direct communication latency and reliability performance of the sidelink, and clarify 5G NR sidelink achieves lower peak of latency and higher packet reception rate in V2V Direct communication performance than an optical wireless communication system product. Then, it also introduces a 5G URLLC use case demonstration of automated follower truck platooning trial employed with the prototype system in a public expressway environment.

  • Low-Light Image Enhancement Method Using a Modified Gamma Transform and Gamma Filtering-Based Histogram Specification for Convex Combination Coefficients

    Mashiho MUKAIDA  Yoshiaki UEDA  Noriaki SUETAKE  

     
    PAPER-Image

      Pubricized:
    2023/04/21
      Vol:
    E106-A No:11
      Page(s):
    1385-1394

    Recently, a lot of low-light image enhancement methods have been proposed. However, these methods have some problems such as causing fine details lost in bright regions and/or unnatural color tones. In this paper, we propose a new low-light image enhancement method to cope with these problems. In the proposed method, a pixel is represented by a convex combination of white, black, and pure color. Then, an equi-hue plane in RGB color space is represented as a triangle whose vertices correspond to white, black, and pure color. The visibility of low-light image is improved by applying a modified gamma transform to the combination coefficients on an equi-hue plane in RGB color space. The contrast of the image is enhanced by the histogram specification method using the histogram smoothed by a filter with a kernel determined based on a gamma distribution. In the experiments, the effectiveness of the proposed method is verified by the comparison with the state-of-the-art low-light image enhancement methods.

  • Optical Fiber Connector Technology Open Access

    Ryo NAGASE  

     
    INVITED PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1044-1049

    Various optical fiber connectors have been developed during the 40 years since optical fiber communications systems were first put into practical use. This paper describes the key technologies for optical connectors and recent technical issues.

  • Chunk Grouping Method to Estimate Available Bandwidth for Adaptive Bitrate Live Streaming

    Daichi HATTORI  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1133-1142

    The Common Media Application Format (CMAF) is a standard for adaptive bitrate live streaming. The CMAF adapts chunk encoding and enables low-latency live streaming. However, conventional bandwidth estimation for adaptive bitrate streaming underestimates bandwidth because download time is affected not only by network bandwidth but also by the idle times between chunks in the same segment. Inaccurate bandwidth estimation decreases the quality of experience of the streaming client. In this paper, we propose a chunk-grouping method to estimate the available bandwidth for adaptive bitrate live streaming. In the proposed method, by delaying HTTP request transmission and bandwidth estimation using grouped chunks, the client estimates the available bandwidth accurately due to there being no idle times in the grouped chunks. In addition, we extend the proposed method to dynamically change the number of grouping chunks according to buffer length during downloading of the previous segment. We evaluate the proposed methods under various network conditions in order to confirm the effectiveness of the proposed methods.

  • Gain and Output Optimization Scheme for Block Low-Resolution DACs in Massive MIMO Downlink

    Taichi YAMAKADO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1200-1209

    In this paper, a nonlinear quantized precoding scheme for low-resolution digital-analog converters (DACs) in a massive multiple-input multiple-output (MIMO) system is proposed. The nonlinear quantized precoding determines transmit antenna outputs with a transmit symbol and channel state information. In a full-digital massive MIMO system, low-resolution DACs are used to suppress power consumption. Conventional precoding algorithms for low-resolution DACs do not optimize transmit antenna gains individually. Thus, in this paper, a precoding scheme that optimizes individual transmit antenna gains as well as the DAC outputs is proposed. In the proposed scheme, the subarray of massive MIMO antennas is treated virtually as a single antenna element. Numerical results obtained through computer simulation show that the proposed precoding scheme achieves bit error rate performance close to that of the conventional precoding scheme with much smaller antenna gains on a CDL-A channel.

  • A Low-Phase-Noise RF Up/Down-Converter for Cost-Effective 5G Millimeter-Wave Test Solutions

    Jaeyong KO  Namkyoung KIM  Kyungho YOO  Tongho CHUNG  

     
    BRIEF PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    713-717

    The increasing demand for millimeter-wave (mmWave) frequencies with wider signal bandwidths, such as 5G NR, requires large investments on test equipment. This work presents a 5G mmWave up/down-converter with a 40 GHz LO, fabricated in custom PCBs with off-the-shelf components. The mmWave converter has broad IF and RF bandwidths of 1∼5 GHz and 21∼45 GHz, and the built-in LO generates 20∼29.5 GHz and 33.5∼40 GHz of output. To achieve high linearity of the converter simultaneously, the LO must produce low-phase-noise and be capable of high harmonics/spur rejection, and design techniques related to these features are demonstrated. Additionally, a reconfigurable IF amplifier for bi-directional conversion is included and demonstrates low gain variation to maintain the linearity of the wideband modulation signals. The final designed converter is tested with 5G OFDM 64-QAM 100 MHz 1-CC (4-CC) signals and shows RF/IF output power of -3/8 dBm with a linear range of 35 (30)/38 (33) dB at an EVM of 25 dB.

  • A Multi-FPGA Implementation of FM-Index Based Genomic Pattern Search

    Ullah IMDAD  Akram BEN AHMED  Kazuei HIRONAKA  Kensuke IIZUKA  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2023/08/09
      Vol:
    E106-D No:11
      Page(s):
    1783-1795

    FPGA clusters that consist of multiple FPGA boards have been gaining interest in recent times. Massively parallel processing with a stand-alone heterogeneous FPGA cluster with SoC- style FPGAs and mid-scale FPGAs is promising with cost-performance benefit. Here, we propose such a heterogeneous FPGA cluster with FiC and M-KUBOS cluster. FiC consists of multiple boards, mounting middle scale Xilinx's FPGAs and DRAMs, which are tightly coupled with high-speed serial links. In addition, M-KUBOS boards are connected to FiC for ensuring high IO data transfer bandwidth. As an example of massively parallel processing, here we implement genomic pattern search. Next-generation sequencing (NGS) technology has revolutionized biological system related research by its high-speed, scalable and massive throughput. To analyze the genomic data, short read mapping technique is used where short Deoxyribonucleic acid (DNA) sequences are mapped relative to a known reference sequence. Although several pattern matching techniques are available, FM-index based pattern search is perfectly suitable for this task due to the fastest mapping from known indices. Since matching can be done in parallel for different data, the massively parallel computing which distributes data, executes in parallel and gathers the results can be applied. We also implement a data compression method where about 10 times reduction in data size is achieved. We found that a M-KUBOS board matches four FiC boards, and a system with six M-KUBOS boards and 24 FiC boards achieved 30 times faster than the software based implementation.

  • FOM-CDS PUF: A Novel Configurable Dual State Strong PUF Based on Feedback Obfuscation Mechanism against Modeling Attacks

    Hong LI  Wenjun CAO  Chen WANG  Xinrui ZHU  Guisheng LIAO  Zhangqing HE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/29
      Vol:
    E106-A No:10
      Page(s):
    1311-1321

    The configurable Ring oscillator Physical unclonable function (CRO PUF) is the newly proposed strong PUF based on classic RO PUF, which can generate exponential Challenge-Response Pairs (CRPs) and has good uniqueness and reliability. However, existing proposals have low hardware utilization and vulnerability to modeling attacks. In this paper, we propose a Novel Configurable Dual State (CDS) PUF with lower overhead and higher resistance to modeling attacks. This structure can be flexibly transformed into RO PUF and TERO PUF in the same topology according to the parity of the Hamming Weight (HW) of the challenge, which can achieve 100% utilization of the inverters and improve the efficiency of hardware utilization. A feedback obfuscation mechanism (FOM) is also proposed, which uses the stable count value of the ring oscillator in the PUF as the updated mask to confuse and hide the original challenge, significantly improving the effect of resisting modeling attacks. The proposed FOM-CDS PUF is analyzed by building a mathematical model and finally implemented on Xilinx Artix-7 FPGA, the test results show that the FOM-CDS PUF can effectively resist several popular modeling attack methods and the prediction accuracy is below 60%. Meanwhile it shows that the FOM-CDS PUF has good performance with uniformity, Bit Error Rate at different temperatures, Bit Error Rate at different voltages and uniqueness of 53.68%, 7.91%, 5.64% and 50.33% respectively.

  • General Closed-Form Transfer Function Expressions for Fast Filter Bank

    Jinguang HAO  Gang WANG  Honggang WANG  Lili WANG  Xuefeng LIU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/04/14
      Vol:
    E106-A No:10
      Page(s):
    1354-1357

    The existing literature focuses on the applications of fast filter bank due to its excellent frequency responses with low complexity. However, the topic is not addressed related to the general transfer function expressions of the corresponding subfilters for a specific channel. To do this, in this paper, general closed-form transfer function expressions for fast filter bank are derived. Firstly, the cascaded structure of fast filter bank is modelled by a binary tree, with which the index of the subfilter at each stage within the channel can be determined. Then the transfer functions for the two outputs of a subfilter are expressed in a unified form. Finally, the general closed-form transfer functions for the channel and its corresponding subfilters are obtained by variables replacement if the prototype lowpass filters for the stages are given. Analytical results and simulations verify the general expressions. With such closed-form expressions lend themselves easily to analysis and direct computation of the transfer functions and the frequency responses without the structure graph.

  • Construction of Near-Optimal Frequency Hopping Sequence Set with Low-Hit-Zone

    Xinyu TIAN  Hongyu HAN  Limengnan ZHOU  Hanzhou WU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/04/13
      Vol:
    E106-A No:10
      Page(s):
    1362-1365

    The low-hit-zone (LHZ) frequency hopping sequence (FHS) sets are widely applicable in quasi-synchronous frequency hopping multiple-access (QS-FHMA) systems. In order to reduce mutual interference (MI) in the zone around the signal origin between different users, we recommend the LHZ FHS set instead of the conventional FHS set. In this letter, we propose a design of LHZ FHS sets via interleaving techniques. The obtained sequences can be confirmed that they are near-optimal in relation to the Peng-Fan-Lee bound.

1-20hit(1931hit)