The search functionality is under construction.

IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.72

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E93-B No.12  (Publication Date:2010/12/01)

    Special Section on Wireless Distributed Networks
  • FOREWORD Open Access

    Kazuhiro UEHARA  

     
    FOREWORD

      Page(s):
    3217-3217
  • Wireless Distributed Network: For Flexible Networking and Radio Resource Management

    Seiichi SAMPEI  Kei SAKAGUCHI  Shinsuke IBI  Koji YAMAMOTO  

     
    INVITED PAPER

      Page(s):
    3218-3227

    This paper proposes a concept for a new technical field called wireless distributed network (WDN) as a strategic technical field to enable flexible networking and radio resource management (RRM) to cope with dynamic variation of spatially distributed traffic demands. As the core technical subject areas for the WDN, this paper identifies distributed networking for flexible network creation, cooperative transmission and reception for flexible link creation, and dynamic spectrum access for flexible radio resource management, and explains their technical features and challenges for constructing the WDN. This paper also discusses some already being studied application fields as well as potential future directions of the WDN applications.

  • Interference Management for Future Cellular OFDMA Systems Using Coordinated Multi-Point Transmission

    Lars THIELE  Volker JUNGNICKEL  Thomas HAUSTEIN  

     
    INVITED PAPER

      Page(s):
    3228-3237

    Todays cellular systems reach their limits for data rate due to the continuously increasing amount of subscribers using wireless service for business purposes or in leisure time (smartphone effect). Thus, recent research focuses on concepts for interference management for cellular OFDMA systems. This paper addresses various techniques related to this topic, while considering the concepts with lowest complexity and backhaul costs as promising candidates to be applied first. Starting from interference canceling receivers over multi-user MIMO using fixed precoding to multi-cell interference estimation, which improves the precision of link adaptation, we discuss closed-loop cooperative transmit beamforming using multiple base stations grouped into a wireless distributed network (WDN), which is denoted as coordinated multi-point joint transmission in the 3GPP LTE-Advanced standardization. It is obvious, the more sophisticated these techniques are, the higher the demands for feedback and backhaul become. Performance results are provided by employing multi-cell simulations according to recommendations from 3GPP. In addition, feasibility of coordinated multi-point joint transmission is demonstrated in a real-time prototype setup, i.e. in the Berlin LTE-Advance Testbed.

  • Combined Nyquist and Compressed Sampling Method for Radio Wave Data Compression of a Heterogeneous Network System Open Access

    Doohwan LEE  Takayuki YAMADA  Hiroyuki SHIBA  Yo YAMAGUCHI  Kazuhiro UEHARA  

     
    PAPER

      Page(s):
    3238-3247

    To satisfy the requirement of a unified platform which can flexibly deal with various wireless radio systems, we proposed and implemented a heterogeneous network system composed of distributed flexible access points and a protocol-free signal processing unit. Distributed flexible access points are remote RF devices which perform the reception of multiple types of radio wave data and transfer the received data to the protocol-free signal processing unit through wired access network. The protocol-free signal processing unit performs multiple types of signal analysis by software. To realize a highly flexible and efficient radio wave data reception and transfer, we employ the recently developed compressed sensing technology. Moreover, we propose a combined Nyquist and compressed sampling method for the decoding signals to be sampled at the Nyquist rate and for the sensing signals to be sampled at the compressed rate. For this purpose, the decoding signals and the sensing signals are converted into the intermediate band frequency (IF) and mixed. In the IF band, the decoding signals are set at lower center frequencies than those of the sensing signals. The down converted signals are sampled at the rate of four times of the whole bandwidth of the decoding signals plus two times of the whole bandwidth of the sensing signals. The purpose of above setting is to simultaneously conduct Nyquist rate and compressed rate sampling in a single ADC. Then, all of odd (or even) samples are preserved and some of even (or odd) samples are randomly discarded. This method reduces the data transfer burden in dealing with the sensing signals while guaranteeing the realization of Nyquist-rate decoding performance. Simulation and experiment results validate the efficiency of the proposed method.

  • An Efficient Ordered Sequential Cooperative Spectrum Sensing Scheme Based on Evidence Theory in Cognitive Radio

    Nhan NGUYEN-THANH  Insoo KOO  

     
    PAPER

      Page(s):
    3248-3257

    Spectrum sensing is a fundamental function for cognitive radio network to protect transmission of primary system. Cooperative spectrum sensing, which can help increasing sensing performance, is regarded as one of the most promising methods in realizing a reliable cognitive network. In such cooperation system, however the communication resources such as sensing time delay, control channel bandwidth and consumption energy for reporting the cognitive radio node's sensing results to the fusion center may become extremely huge when the number of cognitive users is large. In this paper, we propose an ordered sequential cooperative spectrum sensing scheme in which the local sensing data will be sent according to its reliability order to the fusion center. In proposed scheme, the sequential fusion process is sequentially conducted based on Dempster Shafer theory of evidence's combination of the reported sensing results. Above all, the proposed scheme is highly feasible due to the proposed two ordered sequential reporting methods. From simulation results, it is shown that the proposed technique not only keeps the same sensing performance of non-sequential fusion scheme but also extremely reduces the reporting resource requirements.

  • State Transition Probability Based Sensing Duration Optimization Algorithm in Cognitive Radio

    Jin-long WANG  Xiao ZHANG  Qihui WU  

     
    PAPER

      Page(s):
    3258-3265

    In a periodic spectrum sensing framework where each frame consists of a sensing block and a data transmitting block, increasing sensing duration decreases the probabilities of both missed opportunity and interference with primary users, but increasing sensing duration also decreases the energy efficiency and the transmitting efficiency of the cognitive network. Therefore, the sensing duration to use is a trade-off between sensing performance and system efficiencies. The relationships between sensing duration and state transition probability are analyzed firstly, when the licensed channel stays in the idle and busy states respectively. Then a state transition probability based sensing duration optimization algorithm is proposed, which can dynamically optimize the sensing duration of each frame in the current idle/busy state by predicting each frame's state transition probability at the beginning of the current state. Analysis and simulation results reveal that the time-varying optimal sensing duration increases as the state transition probability increases and compared to the existing method, the proposed algorithm can use as little sensing duration in each frame as possible to satisfy the sensing performance constraints so as to maximize the energy and transmitting efficiencies of the cognitive networks.

  • Enhanced Media Access Scheme for Distributed Spectrum Sensing

    Yohannes D. ALEMSEGED  Chen SUN  Ha NGUYEN TRAN  Hiroshi HARADA  

     
    PAPER

      Page(s):
    3266-3273

    In distributed spectrum sensing, spatially distributed sensors perform radio frequency (RF) sensing and forward the result to a fusion center (FC). Cognitive radio (CR) obtains spectral information from the FC. Distributed spectrum sensing facilitates reliable discovery of spectrum opportunity while providing enhanced protection to legacy systems. The overall performance of distributed spectrum sensing depends both on the quality of sensing at the individual sensors and the forwarding scheme from the individual sensors. In this aspect the choice of media access control (MAC) plays a significant role. We can improve the system performance by optimizing the MAC and the spectrum sensing parameters jointly. In this paper we propose an enhanced MAC scheme based on existing scheduled MAC protocols to yield a high performance distributed spectrum sensing. To demonstrate our idea, we provide computer simulation by considering energy detection based distributed spectrum sensors and IEEE 802.15.4 PHY and MAC parameters.

  • Spectrum Handoff for Cognitive Radio Systems Based on Prediction Considering Cross-Layer Optimization

    Xiaoyu QIAO  Zhenhui TAN  Bo AI  Jiaying SONG  

     
    PAPER

      Page(s):
    3274-3283

    The spectrum handoff problem for cognitive radio systems is considered in this paper. The secondary users (SUs) can only opportunistically access the spectrum holes, i.e. the frequency channels unoccupied by the primary users (PUs). As long as a PU appears, SUs have to vacate the channel to avoid interference to PUs and switch to another available channel. In this paper, a prediction-based spectrum handoff scheme is proposed to reduce the negative effect (both the interference to PUs and the service block of SUs) during the switching time. In the proposed scheme, a hidden Markov model is used to predict the occupancy of a frequency channel. By estimating the state of the model in the next time instant, we can predict whether the frequency channel will be occupied by PUs or not. As a cross-layer design, the spectrum sensing performance parameters false alarm probability and missing detection probability are taken into account to enhance accuracy of the channel occupancy prediction. The proposed scheme will react on the spectrum sensing algorithm parameters while the spectrum handoff performance is significantly affected by them. The interference to the PUs could be reduced obviously by adapting the proposed spectrum handoff scheme, associated with a potential increase of switch delay of SUs. It will also be helpful for SUs to save broadband scan time and prefer an appropriate objective channel so as to avoid service block. Numerical results demonstrate the above performance improvement by using this prediction-based scheme.

  • Potential Game Approach for Spectrum Sharing in Distributed Cognitive Radio Networks

    I Wayan MUSTIKA  Koji YAMAMOTO  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER

      Page(s):
    3284-3292

    In a spectrum sharing system, lower-priority users are allowed to spatially reuse the spectrum allocated to higher-priority users as long as they do not disrupt communications of the latter. Therefore, to improve spectrum utilization, an important requirement for the former users is to manage the interference and ensure that the latter users can maintain reliable communications. In the present paper, a game theoretic framework of joint channel selection and power allocation for spectrum sharing in distributed cognitive radio networks is proposed. First, a utility function that captures the cooperative behavior to manage the interference and the satisfaction level to improve the throughput of the lower-priority users is defined. Next, based on the defined utility function, the proposed framework can be formulated as a potential game; thus, it is guaranteed to converge to a Nash equilibrium when the best response dynamic is performed. Simulation results show the convergence of the proposed potential game and reveal that performance improvements in terms of network throughput of the lower-priority users and outage probability of the higher-priority users can be achieved by the introduction of an adaptive coefficient adjustment scheme in the proposed utility function at the expense of the convergence to the Nash equilibrium.

  • Coexistence of Dynamic Spectrum Access Based Heterogeneous Networks

    Chen SUN  Yohannes D. ALEMSEGED  HaNguyen TRAN  Hiroshi HARADA  

     
    PAPER

      Page(s):
    3293-3301

    This paper addresses the coexistence issue of distributed heterogeneous networks where the network nodes are cognitive radio terminals. These nodes, operating as secondary users (SUs), might interfere with primary users (PUs) who are licensed to use a given frequency band. Further, due to the lack of coordination and the dissimilarity of the radio access technologies (RATs) among these wireless nodes, they might interfere with each other. To solve this coexistence problem, we propose an architecture that enables coordination among the distributed nodes. The architecture provides coexistence solutions and sends reconfiguration commands to SU networks. As an example, time sharing is considered as a solution. Further, the time slot allocation ratios and transmit powers are parameters encapsulated in the reconfiguration commands. The performance of the proposed scheme is evaluated in terms of the coexistence between PUs and SUs, as well as the coexistence among SUs. The former addresses the interference from SUs to PUs, whereas the latter addresses the sharing of an identified spectrum opportunity among heterogeneous SU networks for achieving an efficient spectrum usage. In this study, we first introduce a new parameter named as quality of coexistence (QoC), which is defined as the ratio between the quality of SU transmissions and the negative interference to PUs. In this study we assume that the SUs have multiple antennas and employ fixed transmit power control (fixed-TPC). By using the approximation to the distribution of a weighted sum of chi-square random variables (RVs), we develop an analytical model for the time slot allocation among SU networks. Using this analytical model, we obtain the optimal time slot allocation ratios as well as transmit powers of the SU networks by maximizing the QoC. This leads to an efficient spectrum usage among SUs and a minimized negative influence to the PUs. Results show that in a particular scenario the QoC can be increased by 30%.

  • Analytical Study on Performance Improvement of Service Availability in Heterogeneous Radio Networks

    Kanshiro KASHIKI  Tadayuki FUKUHARA  Akira YAMAGUCHI  Toshinori SUZUKI  

     
    PAPER

      Page(s):
    3302-3310

    From the viewpoint of service availability, which is an important evaluation factor in communication quality, we analytically study the performance improvement of heterogeneous radio networks that cooperatively select one system from among multiple communication systems. It is supposed herein that the heterogeneous network selects one system with the larger throughput or with the smaller time delay. To this end, we firstly derive analytical methods using the probability density function of the performance characteristics of the communication systems consisting of the heterogeneous radio network. The analytical method described here is comparatively general and enables the handling of cases where complete cooperation can and cannot be achieved in the heterogeneous network. As for the performance characteristics, we conduct an experiment using the wireless LAN to establish the probability distribution models of the throughput and time delay in the communication system. Using the analytical method and the experimental model obtained, we calculate the performance improvement by cooperative operation in the heterogeneous network. The equational expression to obtain the theoretical performance improvement limit is also investigated through the analytical equations.

  • Cognitive Wireless Router System by Distributed Management of Heterogeneous Wireless Networks

    Kentaro ISHIZU  Homare MURAKAMI  Stanislav FILIN  Hiroshi HARADA  

     
    PAPER

      Page(s):
    3311-3322

    Selections of radio access networks by terminals are currently not coordinated and utilizations of the radio resources are not balanced. As a result, radio resources on some radio systems are occupied even though others can afford. In this paper, in order to provide a framework to resolve this issue, Cognitive Wireless Router (CWR) system is proposed for distributed management and independent reconfiguration of heterogeneous wireless networks. The proposed system selects appropriate operational frequency bands and radio systems to connect to the Internet in corporation between the CWRs and a server and therefore can provide optimized wireless Internet access easily even in environments without wired networks. The developed prototype system reconfigures the radio devices to connect to the Internet in 27 seconds at most. It is revealed that this reconfiguration time can be shortened to less than 100 ms by elaborating its procedure. It is also clarified that network data speed required at the server to deal with 10,000 CWRs is only 4.1 Mbps.

  • Performance of an OFDMA Based Multichannel Slotted ALOHA for Cognitive Radios

    Sangho CHOE  Sung-Kwon PARK  

     
    PAPER

      Page(s):
    3323-3331

    We present an orthogonal frequency division multiple access (OFDMA) based multichannel slotted ALOHA for cognitive radio networks (OMSA-CR). The performance of an infinite population based OMSA-CR system is analyzed in terms of channel capacity, throughput, delay, and packet capture effect. We investigate the channel capacity for OMSA-CR with perfect or imperfect spectrum sensing. We introduce the proposed CR MAC based on two channel selection schemes: non-agile channel selection (NCS) and agile channel selection (ACS). Comparing them, we show the tradeoff between complexity and system performance. We verify the proposed CR system model using numerical analysis. In particular, using simulation with a finite populated linear feedback model, we observe the OMSA-CR MAC tradeoff between throughput and minimum delay whose results matched those of the analytical framework. Numerical results for the proposed system throughput are also compared to conventional MACs, including pure ALOHA based CR MAC.

  • Two Relay-Stage Selection Cooperation in Wireless Networks and Why More than Two Is Not Necessary

    Xingyang CHEN  Lin ZHANG  Yuhan DONG  Xiuming SHAN  Yong REN  

     
    PAPER

      Page(s):
    3332-3344

    The selection cooperation is a basic and attractive scheme of cooperative diversity in the multiple relays scenario. Most previous schemes of selection cooperation consist only one relay-stage in which one relay is selected to retransmit, and the signal from the selected relay is not utilized by other relays. In this paper, we introduce a two relay-stage selection cooperation scheme. The performance can be improved by letting all other relays to utilize the signal from the first selected relay to make another selection and retransmission in the second relay-stage. We derive the closed-form expression of the outage probability of the proposed scheme in the high SNR regime. Both theoretical and numerical results suggest that the proposed scheme can reduce the outage probability compared with the traditional scheme with only one relay-stage. Furthermore, we demonstrate that more than two relay-stage can not further reduce the outage probability. We also study the dependence of the proposed scheme on stage lengths and topology, and analyze the increased overhead.

  • Delay-Sensitive Retransmission Method Based on Network Coding in Wireless LANs

    Yosuke TANIGAWA  Jong-Ok KIM  Hideki TODE  

     
    PAPER

      Page(s):
    3345-3353

    Recently, network coding (NC) has been popularly applied to wireless networks in order to improve scarce wireless capacity. In wireless LANs, NC can be applied to packet retransmission, and a base station can simultaneously retransmit multiple packets destined to different wireless stations by a single retransmission trial. On the other hand, NC creates additional packet delay at both base station and wireless stations, and hence, packet transfer delay may increase seriously. However, existing NC-based retransmission methods do not consider this additional delay explicitly. In addition, when the number of flows is small, NC exhibits less benefit because the chances of NC-based retransmission are highly reduced. Therefore, in this paper, we propose a novel NC-based retransmission method in order to improve packet transfer delay and jitter of received packets. Moreover, to achieve further improvement of delay, jitter and retransmission efficiency even when there exist a small number of traffic flows, we propose a retransmission method in which NC-based retransmission cooperates with the typical ARQ method. We overcome the disadvantage of NC-based retransmission by combining with ARQ cooperatively. Finally, we show the effectiveness of the proposed methods by extensive computer simulation.

  • Superposition Coding Based Wireless Network Coding Scheme for Two-Way Cooperative Relaying

    Megumi KANEKO  Kazunori HAYASHI  Hideaki SAKAI  

     
    PAPER

      Page(s):
    3354-3361

    Recent advances in cooperative communication and wireless Network Coding (NC) may lead to huge performance gains in relay systems. In this context, we focus on the two-way relay scenario, where two nodes exchange information via a common relay. We design a practical Superposition Coding (SC) based NC scheme for Decode-and-Forward (DF) half-duplex relaying, where the goal is to increase the achievable rate. By taking advantage of the direct link and by providing a suboptimal yet efficient power division among the superposed layers, our proposed SC two-way relaying scheme outperforms the reference schemes, including the well-known 3-step DF-NC scheme and the capacity of 2-step schemes for a large set of SNRs, while approaching closely the performance bound.

  • Effect of Power Allocation Schemes on MIMO Two-Way Multi-Hop Network

    Jonghyun LEE  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER

      Page(s):
    3362-3370

    Recently, wireless multi-hop network using MIMO two-way relaying technique has been attracted much attention owing to its high network efficiency. It is well known that the MIMO two-way multi-hop network (MTMN) can provide its maximum throughput in uniform topology of node location. However, in realistic environments with non-uniform topology, network capacity degrades severely due to unequal link quality. Furthermore, the end-to-end capacity also degrades at high SNR due to far (overreach) interference existing in multi-hop relay scenarios. In this paper, we focus on several power allocation schemes to improve the end-to-end capacity performance of MTMN with non-uniform topology and far interference. Three conventional power allocation schemes are reformulated and applied under the system model of MTMN. The first two are centralized methods, i.e., Eigenvector based Power Allocation (EPA) which employs linear algebra and Optimal Power Allocation (OPA) using convex optimization. The last one is Distributed Power Allocation (DPA) using game theory. It is found from numerical analyses that the power allocation schemes are effective for MTMN in terms of end-to-end capacity improvement, especially in non-uniform node arrangement and at high SNR.

  • Enhancement of CSMA/CA and Network Coding in Single-Relay Multi-User Wireless Networks

    Chun-Hsiang HUANG  Daisuke UMEHARA  Satoshi DENNO  Masahiro MORIKURA  Takatoshi SUGIYAMA  

     
    PAPER

      Page(s):
    3371-3380

    Network coding is a promising technique for improving system performance in wireless multihop networks. In this paper, the throughput and fairness in single-relay multi-user wireless networks are evaluated. The carrier sense multiple access with collision avoidance (CSMA/CA) protocol and network coding are used in the medium access control (MAC) sublayer in such networks. The fairness of wireless medium access among stations (STAs), the access point (AP), and the relay station (RS) results in asymmetric bidirectional flows via the RS; as a result the wireless throughput decreases substantially. To overcome this problem, an autonomous optimization of minimum contention window size is developed for CSMA/CA and network coding to assign appropriate transmission opportunities to both the AP and RS. By optimizing the minimum contention window size according to the number of STAs, the wireless throughput in single-relay multi-user networks can be improved and the fairness between bidirectional flows via the RS can be achieved. Numerical analysis and computer simulations enable us to evaluate the performances of CSMA/CA and network coding in single-relay multi-user wireless networks.

  • Congestion Awareness Multi-Hop Broadcasting for Safety Message Dissemination in VANET

    Songnan BAI  Jae-il JUNG  

     
    PAPER

      Page(s):
    3381-3390

    The safety applications for cooperative driving in VANETs, typically require the dissemination of safety-related information to all vehicles with high reliability and a strict timeline. However, due to the high vehicle mobility, dynamic traffic density, and a self-organized network, Safety message dissemination has a special challenge to efficiently use the limited network resources to satisfy its requirements. With this motivation, we propose a novel broadcasting protocol referred to as congestion awareness multi-hop broadcasting (CAMB) based loosely on a TDMA-like transmission scheduling scheme. The proposed protocol was evaluated using different traffic scenarios within both a realistic channel model and an 802.11p PHY/MAC model in our simulation. The simulation results showed that the performance of our CAMB protocol was better than those of the existing broadcasting protocols in terms of channel access delay, packet delivery ratio, end-to-end delay, and network overhead.

  • Cognitive Temporary Bypassing for Reliable Multi-Hop Transmission in Wireless Ad Hoc Networks

    Kenichi NAGAO  Yasushi YAMAO  

     
    PAPER

      Page(s):
    3391-3399

    Multi-hop wireless ad hoc networks suffer from temporary link error due to fading. In order to improve packet transmission reliability and achieve efficient transmission in fading environment, a new cognitive temporary bypassing scheme is proposed based on a cross-layer approach and cognitive behavior of local nodes. The proposed scheme enables neighboring nodes to prepare and create a temporary bypass for lost-packets. This is done by monitoring message packets that include information of the multi-hop route and link-acknowledgement. The scheme also includes an anti-collision function that is necessary to prevent contention among multiple bypassing nodes. Packet success probability with the proposed scheme is studied both by theoretical analysis and time-domain computer simulation for Rayleigh faded single- and multi-hop links. Network simulation using a modified QualNet simulator validate that packet success probability is remarkably improved with the scheme for maximum Doppler frequencies up to 30 Hz.

  • Distributed Location Service with Spatial Awareness for Mobile Ad Hoc Networks

    Shyr-Kuen CHEN  Tay-Yu CHEN  Pi-Chung WANG  

     
    PAPER

      Page(s):
    3400-3408

    A mobile ad-hoc network (MANET) consists of a collection of wireless mobile nodes without any fixed network infrastructure. Since the mobile nodes form a constantly changing topology, the design of efficient and scalable routing protocols is a fundamental challenge in MANETs. In the current literature, position-based routing protocols are regarded as having better scalability and lower control overhead than topology-based routing protocols. Since location services are the most critical part of position-based routing protocols, we present a multi-home-region scheme, Distributed Virtual Home Region with Spatial Awareness (DVHR-SA), to improve the performance of location service in this paper. Our scheme adaptively selects different update and query procedures according to the location of a source node. The simulation results show that DVHR-SA shortens the lengths of the update, query and reply paths. Our scheme also reduces the overall network message overhead. Therefore, DVHR-SA is considerably fast and stable.

  • Chordal Graph Based Channel Assignment for Multicast and Unicast Traffic in Wireless Mesh Networks

    Junfeng JIN  Yusheng JI  Baohua ZHAO  Hao ZHOU  

     
    PAPER

      Page(s):
    3409-3416

    With the increasing popularity of multicast and real-time streaming service applications, efficient channel assignment algorithms that handle both multicast and unicast traffic in wireless mesh networks are needed. One of the most effective approaches to enhance the capacity of wireless networks is to use systems with multiple channels and multiple radio interfaces. However, most of the past works focus on vertex coloring of a general contention graph, which is NP-Complete, and use the greedy algorithm to achieve a suboptimal result. In this paper, we combine unicast and multicast with a transmission set, and propose a framework named Chordal Graph Based Channel Assignment (CGCA) that performs channel assignment for multicast and unicast traffic in multi-channel multi-radio wireless mesh networks. The proposed framework based on chordal graph coloring minimizes the interference of the network and prevents unicast traffic from starvation. Simulation results show that our framework provides high throughput and low end-to-end delay for both multicast and unicast traffic. Furthermore, our framework significantly outperforms other well-known schemes that have a similar objective in various scenarios.

  • A Channel-Hopping MAC Protocol for Cognitive IEEE 802.16d Mesh Networks

    Ming-Tuo ZHOU  Hiroshi HARADA  

     
    PAPER

      Page(s):
    3417-3428

    A channel-hopping medium access control (MAC) protocol is proposed for cognitive operation of the 802.16d Mesh networks. The proposal mainly includes a channel-hopping algorithm of channel accessing for control messages transmission and reception, an algorithm of bandwidth allocation in cognitive operation, a cognition-enhanced frame structure, a method of spectrum sensing results reporting, and a method of incumbent detection. Compared to other studies, the channel-hopping algorithm for control messages transmission and reception requires no extra common control channels and operation of mesh clusters, thus it is more cost-effective and simpler in operation. Analysis shows that with this algorithm a Mesh node with any available channels has fair opportunities to receive beacon and network configuration information. Numerical results show that, compared to the mesh cluster method, the proposed channel-hopping algorithm has gain, e.g., as high as 3 times, in getting the data scheduling control messages received by one-hop neighbors, thus it has advantages in minimizing bandwidth allocation collisions. The algorithm of bandwidth allocation details the three-way handshake framework for bandwidth application and grant that is defined in 802.16d Mesh standard, and it enables dynamical resource allocations in cognitive operations. The feasibility of the channel-hopping MAC protocol is confirmed by simulations. And simulation results show that with the parameters set, a normalized aggregate saturation throughput of about 70% is achievable.

  • A Novel Emergency Rescue Urgent Communications for Sharing Evacuation Support Information in Panic-Type Disasters

    Tomotaka WADA  Akinori YAMANE  Kazuhiro OHTSUKI  Hiromi OKADA  

     
    PAPER

      Page(s):
    3429-3437

    Many people have suffered and died due to a lot of large-scale disasters such as earthquake, fire, and terrorism, etc. In disasters where most evacuators become panic, two things are necessary for their immediate evacuation. The first is to estimate the location of the disaster occurrence. The second is to construct an evacuation support system that searches for safe and efficient evacuation routes. In this paper, we propose Emergency Rescue Urgent Communication -- Evacuation Support System (EUC-ESS) based on Mobile Ad-hoc networks (MANET) composed of many mobile terminals. Using experiments and computer simulations, we show that this system would support evacuators in determining appropriate routes for survivors.

  • Low-Complexity and Energy-Efficient Algorithms on Image Compression for Wireless Sensor Networks

    Phat NGUYEN HUU  Vinh TRAN-QUANG  Takumi MIYOSHI  

     
    PAPER

      Page(s):
    3438-3447

    This paper proposes two algorithms to balance energy consumption among sensor nodes by distributing the workload of image compression tasks within a cluster on wireless sensor networks. The main point of the proposed algorithms is to adopt the energy threshold, which is used when we implement the exchange and/or assignment of tasks among sensor nodes. The threshold is well adaptive to the residual energy of sensor nodes, input image, compressed output, and network parameters. We apply the lapped transform technique, an extended version of the discrete cosine transform, and run length encoding before Lempel-Ziv-Welch coding to the proposed algorithms to improve both quality and compression rate in image compression scheme. We extensively conduct computational experiments to verify the our methods and find that the proposed algorithms achieve not only balancing the total energy consumption among sensor nodes and, thus, increasing the overall network lifetime, but also reducing block noise in image compression.

  • The Gaussian MIMO Broadcast Channel under Receive Power Protection Constraints Open Access

    Ian Dexter GARCIA  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER

      Page(s):
    3448-3460

    A Gaussian MIMO broadcast channel (GMBC) models the MIMO transmission of Gaussian signals from a transmitter to one or more receivers. Its capacity region and different precoding schemes for it have been well investigated, especially for the case wherein there are only transmit power constraints. In this paper, a special case of GMBC is investigated, wherein receive power constraints are also included. By imposing receive power constraints, the model, called protected GMBC (PGMBC), can be applied to certain scenarios in spatial spectrum sharing, secretive communications, mesh networks and base station cooperation. The sum capacity, capacity region, and application examples for the PGMBC are discussed in this paper. Sub-optimum precoding algorithms are also proposed for the PGMBC, where standard user precoding techniques are performed over a BC with a modified channel, which we refer to as the "protection-implied BC." In the protection-implied BC, the receiver protection constraints have been implied in the channel, which means that by satisfying the transmit power constraints on the protection implied channel, receiver protection constraints are guaranteed to be met. Any standard single-user or multi-user MIMO precoding scheme may then be performed on the protection-implied channel. When SINR-matching duality-based precoding is applied on the protection-implied channel, sum-capacity under full protection constraints (zero receive power), and near-sum-capacity under partial protection constraints (limited non-zero receive power) are achieved, and were verified by simulations.

  • Closed Form Solutions of Joint Water-Filling for Coordinated Transmission

    Bing LUO  Qimei CUI  Hui WANG  Xiaofeng TAO  Ping ZHANG  

     
    PAPER

      Page(s):
    3461-3468

    It is known that traditional water-filling provides a closed form solution for capacity maximization in frequency-selective channels or fading channels with adaptive modulation. However, the solution is derived from a maximum mutual information argument with a single total power constraint. Motivated by the new technology of coordinated multiple point transmission (CoMP), this paper considers a novel power allocation scheme for a frequency-selective fading channel with multiple coordinated transmission points (CTP) transmission, in which each CTP has a power constraint and an individual channel state information (CSI). In order to maximize the channel's throughput, closed form solutions are obtained by solving a non-convex constrained optimization problem. The solution turns out to take the form of traditional WF and also combined with some regular cooperative feature. Based on the derived solution, we firstly investigate a joint water-filling (Jo-WF) power allocation scheme and a new iterative Jo-WF algorithm. Numerical results are presented to verify the optimality of the derived scheme and to show throughput gains over traditional non-coordinated water-filling (WF) and equal power allocation (EPA). Considering the flexibility of CTP's category, e.g., base station or relay station, it is known that the derived Jo-WF power allocation scheme can be valid for any coordinated networks such as next-generation cellular networks or ad-hoc networks.

  • Co-channel Interference Mitigation via Joint Frequency and Space Domains Base Station Cooperation for Multi-Cell OFDMA Systems

    Yizhen JIA  Xiaoming TAO  Youzheng WANG  Yukui PEI  Jianhua LU  

     
    PAPER

      Page(s):
    3469-3479

    Base Station (BS) cooperation has been considered as a promising technology to mitigate co-channel interference (CCI), yielding great capacity improvement in cellular systems. In this paper, by combining frequency domain cooperation and space domain cooperation together, we design a new CCI mitigation scheme to maximize the total utility for a multi-cell OFDMA network. The scheme formulates the CCI mitigation problem as a mixture integer programming problem, which involves a joint user-set-oriented subcarrier assignment and power allocation. A computationally feasible algorithm based on Lagrange dual decomposition is derived to evaluate the optimal value of the problem. Moreover, a low-complexity suboptimal algorithm is also presented. Simulation results show that our scheme outperforms the counterparts incorporating BS cooperation in a single domain considerably, and the proposed low-complexity algorithm achieves near optimal performance.

  • Downlink Radio Resource Allocation for Coordinated Cellular OFDMA Networks

    Jingya LI  Xiaodong XU  Xin CHEN  Xiaofeng TAO  Hui ZHANG  Tommy SVENSSON  Carmen BOTELLA  

     
    PAPER

      Page(s):
    3480-3488

    Base station coordination is considered as a promising technique to mitigate inter-cell interference and improve the cell-edge performance in cellular orthogonal frequency division multiple-access (OFDMA) networks. The problem to design an efficient radio resource allocation scheme for coordinated cellular OFDMA networks incorporating base station coordination has been only partially investigated. In this contribution, a novel radio resource allocation algorithm with universal frequency reuse is proposed to support base station coordinated transmission. Firstly, with the assumption of global coordination between all base station sectors in the network, a coordinated subchannel assignment algorithm is proposed. Then, by dividing the entire network into a number of disjoint coordinated clusters of base station sectors, a reduced-feedback algorithm for subchannel assignment is proposed for practical use. The utility function based on the user average throughput is used to balance the efficiency and fairness of wireless resource allocation. System level simulation results demonstrate that the reduced-feedback subchannel assignment algorithm significantly improves the cell-edge average throughput and the fairness index of users in the network, with acceptable degradation of cell-average performance.

  • Proportional Fair Resource Allocation in Coordinated MIMO Networks with Interference Suppression

    Lei ZHONG  Yusheng JI  

     
    PAPER

      Page(s):
    3489-3496

    The biggest challenge in multi-cell MIMO multiplexing systems is how to effectively suppress the other-cell interference (OCI) since the OCI severely decrease the system performance. Cooperation among cells is one of the most promising solutions to OCI problems. However, this solution suffers greatly from delay and overhead issues, which make it impractical. A coordinated MIMO system with a simplified cooperation between the base stations is a compromise between the theory and practice. We aim to devise an effective resource allocation algorithm based on a coordinated MIMO system that largely alleviates the OCI. In this paper, we propose a joint resource allocation algorithm incorporating intra-cell beamforming multiplexing and inter-cell interference suppression, which adaptively allocates the transmitting power and schedules users while achieving close to an optimal system throughput under proportional fairness consideration. We formulate this problem as a nonlinear combinational optimization problem, which is hard to solve. Then, we decouple the variables and transform it into a problem with convex sub-problems that can be solve but still need heavy computational complexity. In order to implement the algorithm in real-time scenarios, we reduce the computational complexity by assuming an equal power allocation utility to do user scheduling before the power allocation. Extensive simulation results show that the joint resource allocation algorithm can achieve a higher throughput and better fairness than the traditional method while maintains the proportional fairness. Moreover, the low-complexity algorithm obtains a better fairness and less computational complexity with only a slight loss in throughput.

  • A Censor-Based Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Sensor Networks

    Thuc KIEU-XUAN  Insoo KOO  

     
    LETTER

      Page(s):
    3497-3500

    This letter proposes a novel censor-based scheme for cooperative spectrum sensing on Cognitive Radio Sensor Networks. A Takagi-Sugeno's fuzzy system is proposed to make the decision on the presence of the licensed user's signal based on the observed energy at each cognitive sensor node. The local spectrum sensing results are aggregated to make the final sensing decision at the fusion center after being censored to reduce transmission energy and reporting time. Simulation results show that significant improvement of the spectrum sensing accuracy, and saving energy as well as reporting time are achieved by our scheme.

  • Analysis of Primary Signal Detection Period in Cognitive Wireless Communications

    Chang-Woo PYO  Hiroshi HARADA  

     
    LETTER

      Page(s):
    3501-3504

    This paper investigates primary signal detection by using a quiet period (QP) in cognitive wireless communications. In particular, we provide an analytical model for studying the impact of QPs on the system performance. Our analysis shows that two successive QPs have a significant impact on system performance. Moreover, the analytical results obtained reveal an optimum period of two successive QPs that maximize system performance.

  • Space Frequency Code for Cooperative Communications with both Timing Errors and Carrier Frequency Offsets

    Weile ZHANG  Huiming WANG  Qinye YIN  Wenjie WANG  

     
    LETTER

      Page(s):
    3505-3508

    In this letter, we propose a simple distributed space-frequency code with both timing errors and multiple carrier frequency offsets (CFO) in asynchronous cooperative communications. By employing both the Alamouti coding approach and the transmit repetition diversity technique, full diversity gain can be achieved by the fast symbol-wise maximum likelihood (ML) decoding at the destination node. Analysis and simulations demonstrate the effectiveness of the proposed method.

  • EXIT Analysis for MAP-Based Joint Iterative Decoding of Separately Encoded Correlated Sources

    Kentaro KOBAYASHI  Takaya YAMAZATO  Masaaki KATAYAMA  

     
    LETTER

      Page(s):
    3509-3513

    We develop a mathematical framework for the extrinsic information transfer (EXIT) analysis to assess the convergence behavior of maximum a posteriori (MAP)-based joint iterative decoding of correlated sources, which are separately encoded and transmitted over noisy channels. Unlike the previous work, our approach focuses on the case side information about the correlation is not perfectly given at the joint decoder but is extracted from decoder output and updated in an iterative manner. The presented framework provides a convenient way to compare between schemes. We show that it allows us to easily and accurately predict joint decoding gain and turbo cliff position.

  • Optimized Spatial Capacity by Eigenvalue Decomposition of Adjacency Matrix

    Fumie ONO  

     
    LETTER

      Page(s):
    3514-3517

    In this letter, an eigenspace of network topology is introduced to increase a spatial capacity. The network topology is represented as an adjacency matrix. By an eigenvector of adjacency matrix, efficient two way transmission can be realized in wireless distributed networks. It is confirmed by numerical analysis that the scheme with an eigenvector of adjacency matrix supplies higher spatial capacity and reliability than that of conventional scheme.

  • Distributed Ranging Method for Wireless Sensor Network Localization

    Weile ZHANG  Qinye YIN  Wenjie WANG  

     
    LETTER

      Page(s):
    3518-3521

    A novel distributed ranging method for wireless sensor networks (WSN) is proposed in this letter. Linear frequency modulation (LFM) waves are emitted from the two antenna elements equipped at the anchor node simultaneously to create an interference field. Through the frequency measurement of local RSSI (Received Signal Strength Indication) signal, the horizontal distance from the anchor node can be estimated independently at each sensor. Analysis and simulation results demonstrate the effectiveness of our proposed method.

  • A Buffer Management Technique for Guaranteed Desired Communication Reliability and Low-Power in Wireless Sensor Networks

    Dae-Young KIM  Jinsung CHO  Ben LEE  

     
    LETTER

      Page(s):
    3522-3525

    Reliable data transmission is desirable in wireless sensor networks due to the high packet loss rate during multi-hop transmissions. To reliably transmit data for event-driven applications, packet loss recovery mechanism is needed. For loss recovery, sensor nodes need to keep packets in their buffers until transmissions successfully complete. However, since sensor nodes have limited memory, packets cannot be buffered for a long period of time. This letter proposes an efficient buffer management technique that caches data packets for appropriate amount of time to minimize the resource requirements and at the same time provide reliable data transmission among sensor nodes.

  • Logical Position Exchange Algorithm for Efficient Management in ZigBee Tree Networks

    Saeyoung AHN  Sunshin AN  

     
    LETTER

      Page(s):
    3526-3529

    Currently, there are various routing methods that consider the energy in a wireless sensor environment. The algorithm we consider is a low-rate wireless personal area network, viz., 802.15.4, and ZigBee routing network. Considering, the overall organization of the network energy efficiency, we suggest a logical position exchange (LPE) algorithm between specified nodes. Logical positioning means connecting high sub-networks and low sub-networks based on the neighbor nodes information of the address ID, and depth in the ZigBee tree topology network. When one of the nodes of the tree topology network, which is responsible for connecting multiple low sub-networks and high sub-networks, has difficulty performing its important roles in the network, because of energy exhaustion, it exchanges essential information and entrusts logical positioning to another node that is capable of it. A partial change in the logical topology enhances the energy efficiency in the network.

  • Tradeoffs between Throughput and Fairness of Parallel Round Robin Scheduling in DAS

    Zhanjun JIANG  Dongming WANG  Xiaohu YOU  

     
    LETTER

      Page(s):
    3530-3533

    Both multiplexing and multi-user diversity are exploited based on Round Robin (RR) scheduling to achieve tradeoffs between average throughput and fairness in distributed antenna systems (DAS). Firstly, a parallel Round Robin (PRR) scheduling scheme is presented based on the multi-user multiplexing in spatial domain to enhance the throughput, which inherits the excellent fairness performance of RR. Then a parallel grouping Round Robin (PGRR) is proposed to exploit multi-user diversity based on PRR. Due to the integration of multi-user diversity and multi-user multiplexing, a great improvement of throughput is achieved in PGRR. However, the expense of the improvement is at the degradation of fairness since the "best channel criteria" is used in PGRR. Simulations verify analysis conclusions and show that tradeoffs between throughput and fairness can be achieved in PGRR.

  • Capacity of Sectorized Distributed Networks Employing Adaptive Collaboration from Remote Antennas

    Jonghyun PARK  Ju Wook JANG  Sang-Gyu PARK  Wonjin SUNG  

     
    LETTER

      Page(s):
    3534-3537

    Distributed networks employing collaborative transmission (CT) from remote antennas can provide improved system capacity and cell-edge performance, by using appropriate transmission strategies. When compared to conventional non-collaborative transmission (NCT) from one base station (BS), we show that CT from two adjacent BSs can be beneficial in terms of the capacity, even when the transmission rate is normalized by the number of collaborating BSs. We further demonstrate that performing adaptive transmission (AT) between NCT and CT based on the instantaneous channel conditions provide an additional gain in capacity. The exact amount of achievable gain is quantified by the closed-form formula for the capacity distribution, which is derived using the Jacobian transformation. The presented distribution is immediately applicable to 6-sectored distributed cellular network, for which we present numerical verification of the results.

  • A Per-User QoS Enhancement Strategy via Downlink Cooperative Transmission Using Distributed Antennas

    Byungseok LEE  Ju Wook JANG  Sang-Gyu PARK  Wonjin SUNG  

     
    LETTER

      Page(s):
    3538-3541

    In this letter, we address a strategy to enhance the signal-to-interference plus noise ratio (SINR) of the worst-case user by using cooperative transmission from a set of geographically separated antennas. Unlike previously reported schemes which are based on either the power control of individual antennas or cooperative orthogonal transmission, the presented strategy utilizes the minimum-mean-squared error (MMSE) filter structure for beamforming, which provides increased robustness to the external interference as well as the background noise at the receiver. By iteratively updating the cooperative transmission beamforming vector and power control (PC), the balanced SINR is obtained for all users, while the transmission power from each antenna also converges to within the constrained value. It is demonstrated that proposed MMSE beamforming significantly outperforms other existing schemes in terms of the achievable minimum SINR.

  • Regular Section
  • Energy Saving Scheme with an Extra Active Period for LAN Switches

    Hitomi TAMURA  Ritsuko TOMIHARA  Yutaka FUKUDA  Kenji KAWAHARA  Yuji OIE  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    3542-3554

    An immense number of LAN switches are currently in use worldwide. Therefore, methods that can reduce the energy consumption of these devices are of great practical interest. A simple way to save power in LAN switches is to switch the interfaces to sleep mode when no packets are buffered and to keep the interfaces in active mode while there are packets to be transmitted. Although this would appear to be the most effective energy saving scheme, mode switching gives rise to in-rush current, which can cause electrical damage to devices. This problem arises from excessive mode switching, which should be avoided. Thus, the main objective is to develop a method by which to reduce the number of mode switchings that result in short-duration sleep modes because these switchings do not contribute greatly to energy efficiency but can damage the device. To this end, a method is adopted whereby the interface is kept in active mode for an "extra" period of time after all packets have been flushed from the buffer. This period is the "extra active period (EAP)" and this scheme protects the device at the expense of energy saving efficiency. In this paper, this scheme is evaluated analytically in terms of its power reduction ratio and frequency of mode changes by modifying the M/M/1 and IPP/M/1 queuing models. The numerical results show how the duration of the extra active period degrades the energy saving performance while reducing the number of mode changes. We analytically show an exact trade-off between the power reduction ratio and the average number of turn-ons in the EAP model with Poisson packet arrival. Furthermore, we extend the scheme to determine the EAP dynamically and adaptively depending on the short-term utilization of the interface and demonstrate the effectiveness of the extended scheme by simulation. The newly developed scheme will enable LAN switches to be designed with energy savings in mind without exceeding the constraints of the device.

  • Iterative Source-Channel Decoding Using Symbol-Level Extrinsic Information

    Chun-Feng WU  Wen-Whei CHANG  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    3555-3563

    Transmission of convolutionally encoded source-codec parameters over noisy channels can benefit from the turbo principle through iterative source-channel decoding. We first formulate a recursive implementation based on sectionalized code trellises for MAP symbol decoding of binary convolutional codes. Performance is further enhanced by the use of an interpolative softbit source decoder that takes into account the channel outputs within an interleaving block. Simulation results indicate that our proposed scheme allows to exchange between its constituent decoders the symbol-level extrinsic information and achieves high robustness against channel noises.

  • Flow-Admission Control Based on Equality of Heterogeneous Traffic (Two-Type Flow Model)

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Page(s):
    3564-3576

    Multimedia applications such as video and audio have recently come into much wider use. Because this heterogeneous traffic consumes most of the network's resources, call admission control (CAC) is required to maintain high-quality services. User satisfaction depends on CAC's success in accommodating application flows. Conventional CACs do not take into consideration user satisfaction because their main purpose is to improve the utilization of resources. Moreover, if we assume a service where an ISP provides a "flat-based charging," each user may receive same user satisfaction as a result of users being accommodated in a network, even if each has a different bandwidth. Therefore, we propose a novel CAC to maximize total user satisfaction based on a new philosophy where heterog eneous traffic is treated equally in networks. Theoretical analysis is used to derive optimal thresholds for various traffic configurations with a full search system. We also carried out theoretical numerical analysis to demonstrate the effectiveness of our new CAC. Moreover, we propose a sub-optimal threshold configuration obtained by using an approximation formula to develop practical CAC from these observations. We tested and confirmed that performance could be improved by using sub-optimal parameters.

  • A Contention Access Mechanism Based on a Partitioned Contention Access Period in IEEE 802.15.4 MAC

    Sueng Jae BAE  Tae-Jin LEE  Hyoung-Kee CHOI  Min Young CHUNG  

     
    PAPER-Network

      Page(s):
    3577-3590

    In the contention access period (CAP) of IEEE 802.15.4 beacon-enabled mode, collision probability increases, and network performance decreases as the number of contending devices increases. In this paper, we propose an enhanced contention access mechanism (ECAM) to reduce the collision probability in low rate -- wireless personal area networks (LR-WPANs). In ECAM, since the duration of each CAP is divided into multiple sub-CAPs, the number of devices contending for frame transmissions in each sub-CAP can be reduced by approximately one over the number of sub-CAPs. Further, this lowers the probability of collision due to two or more simultaneous frame transmissions. In addition, since ECAM shortens the channel access duration of devices, devices with ECAM have lower power consumption. To compare the performance of ECAM with that of the IEEE 802.15.4 standard, we carry out extensive simulations. The results show that ECAM yields better performance than the IEEE 802.15.4 standard, especially for dense networks with a heavy traffic load.

  • A Lightweight Routing Protocol for Mobile Target Detection in Wireless Sensor Networks

    Yu-Chen KUO  Wen-Tien YEH  Ching-Sung CHEN  Ching-Wen CHEN  

     
    PAPER-Network

      Page(s):
    3591-3599

    The AODV routing protocol, which is simple and efficient, is often used in wireless sensor networks to transmit data. The AODV routing protocol constructs a path from the source node, which detects the target, to the sink node. Whenever the target moves, the path will be reconstructed and the RREQ packet will be broadcasted to flood the wireless sensor network. The localization repair routing protocol sets up a reconstruction area and restricts the broadcast of the RREQ packet to that area to avoid broadcast storm. However, this method cannot reconstruct the path once the target moves out of the reconstruction area. In this paper, we propose a lightweight routing protocol for mobile target detection. When the path breaks because of the movement of the target, the nodes can repair the path effectively using the presented routing information to achieve the lightweight effect.

  • An Efficient Inter-Carrier Interference Cancellation Scheme for OFDM Systems with Frequency Estimation Errors

    Wei-Wen HU  Chih-Peng LI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3600-3605

    One of the major drawbacks of orthogonal frequency division multiplexing (OFDM) systems is their vulnerability to synchronization errors. To remedy the inter-carrier interference (ICI) effect caused by carrier frequency offset (CFO) estimation errors, this paper proposes a weighted linear parallel ICI cancellation (WLPICIC) equalizer. The optimal weights in the WLPICIC scheme are derived in closed-form expressions by maximizing the average signal-to-interference ratio (SIR) at the WLPICIC output of each sub-carrier. The simulation results show that the WLPICIC equalizer significantly improves the performance of OFDM systems with frequency estimation errors in both AWGN channels and frequency selective fading channels.

  • An Enhanced Automatic Gain Control Algorithm for Initial Cell Search in 3GPP LTE TDD System

    Jun-Hee JANG  Keun-Dea KIM  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3606-3615

    In this paper, we propose an AGC (Automatic Gain Control) algorithm for initial cell search in 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) TDD (Time Division Duplex) system. Since the received signal has a large signal power difference between uplink and downlink subframe in wireless communication systems using a TDD scheme, conventional AGC scheme cannot sufficiently adjust the AGC gain because the AGC gain cannot converge fast enough to properly respond. Therefore, conventional AGC scheme leads to increased AGC gain variation, and the received signal will be attenuated by large AGC gain variation. To overcome this limitation, we propose an AGC scheme based on the average amplitude ratio calculation which can not only effectively increase convergence speed of the AGC gain but also maintain the stability of AGC operation in LTE TDD system. Also, it is important for AGC to converge efficiently for the accurate radio frame timing detection during the subsequent initial cell search procedure. Therefore, we also consider the proposed AGC scheme in combination with PSS (Primary Synchronization Signal) detection interface for the first step of initial cell search process in LTE TDD system to obtain both a stable AGC operation and accurate PSS detection performance. By extensive computer simulation in the presence of frequency offset and various channel environments, we verified that the proposed method can obtain a good behavior in terms of demodulation and PSS detection performance in LTE TDD system.

  • Optimizing Position of Repeaters in Distributed MIMO Repeater System for Large Capacity

    Pham Thanh HIEP  Ryuji KOHNO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    3616-3623

    Multiple-input multiple-output (MIMO) repeater systems have been discussed in several published papers. When a repeater has only one antenna element, the propagation environment is called keyhole. In this kind of scenario the achievable channel capacity and link quality are decreased. Another limit is when the number of the antenna elements of a repeater is larger than that of a MIMO transceiver, the channel capacity cannot be increased. In this paper, in order to obtain an upper bound of the channel capacity, we express a propagation process of the distributed MIMO repeater system with amplify-and-forward method by the numerical formular, and optimize the position of each repeater.

  • TOA UWB Positioning with Two Receivers Using Known Indoor Features

    Jan KIETLINSKI-ZALESKI  Takaya YAMAZATO  Masaaki KATAYAMA  

     
    PAPER-Sensing

      Page(s):
    3624-3631

    Ultra-Wideband is an attractive technology for short range positioning, especially indoors. However, for normal Time of Arrival (ToA) positioning, at least three receivers with unblocked direct path to the transmitter are required. A requirement that is not always met. In this work, a novel algorithm for ToA positioning using only two receivers is presented. This is possible by exploiting the knowledge of some of the indoor features, namely positions of big flat reflective surfaces, for example ceiling and walls. The proposed algorithm was tested using data from a measurement campaign.

  • Slow-Wave Microstrip Lines Using Ground Slots for Enhanced Impedance Control

    Kook Joo LEE  Hyung Jin PARK  Seung-Ho CHOI  Moonil KIM  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    3632-3634

    Straight microstrip lines alternately loaded with ground slots and open-end stubs are analyzed. Fabricated samples containing slots and stubs with various length combinations demonstrate constant slow-wave factors of 1.7 to 3.0 with negligible amounts of radiation loss and larger characteristic impedance tuning range. A slow-wave band-rejection filter at 1.8 GHz is built for performance comparison with a regular microstrip-line filter.

  • Iterative Throughput Calculation for Crosspoint Queued Switch

    Milutin RADONJIC  Igor RADUSINOVIC  Jelena CVOROVIC  Kenji YOSHIGOE  

     
    LETTER-Network System

      Page(s):
    3635-3638

    In this letter, we propose a novel approximate method for throughput calculation of crossbar switch with buffers only in crosspoints, in the case of uniform traffic. It is an iterative method based on the balance equations that describe crosspoint buffer state. Due to some approximations, we derive very simple formulas suitable for matrix calculation. This method gives results very close to the results obtained by numerous simulations, especially for larger switch and long buffers.

  • Circularly Polarized Microstrip Antenna with Reconfigurable Capability Using Ground Slot Perturbations

    Seongmin PYO  Jae-Kwan LEE  Min-Jae LEE  Dae-Myoung IN  Young-Sik KIM  

     
    LETTER-Antennas and Propagation

      Page(s):
    3639-3642

    A novel square patch antenna with reconfigurable circular polarization (CP) is presented in this letter. A circular slot with perturbation is placed beneath the patch. The circular slot that has an inner perturbation yields right-handed CP, but with an outer perturbation slot yields left-handed CP. Experiments show an antenna gain of 2.8 dBic and a 3-dB axial ratio bandwidth of 30 MHz which well match the corresponding simulation results.

  • Evaluation of SAR and Temperature Elevation Using Japanese Anatomical Human Models for Body-Worn Devices

    Teruo ONISHI  Takahiro IYAMA  Lira HAMADA  Soichi WATANABE  Akimasa HIRATA  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Page(s):
    3643-3646

    This paper investigates the relationship between averaged SAR (Specific Absorption Rate) over 10 g mass and temperature elevation in Japanese numerical anatomical models when devices are mounted on the body. Simplifying the radiation source as a half-wavelength dipole, the generated electrical field and SAR are calculated using the FDTD (Finite-Difference Time-Domain) method. Then the bio-heat equation is solved to obtain the temperature elevation due to the SAR derived using the FDTD method as heat source. Frequencies used in the study are 900 MHz and 1950 MHz, which are used for mobile phones. In addition, 3500 MHz is considered because this frequency is reserved for IMT-Advanced (International Mobile Telecommunication-Advanced System). Computational results obtained herein show that the 10 g-average SAR and the temperature elevation are not proportional to frequency. In addition, it is clear that those at 3500 MHz are lower than that at 1950 MHz even though the frequency is higher. It is the point to be stressed here is that good correlation between the 10 g-average SAR and the temperature elevation is observed even for the body-worn device.

  • Resource-Aware Path Selection in Heterogeneous Self-Organizing Wireless Networks

    Bongjhin SHIN  Hoyoung CHOI  Daehyoung HONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3647-3650

    We deal with a path selection problem for heterogeneous wireless networks integrated with Frequency Agile Access Points. Our goal is to find the minimum achievable amount of radio resources required to set up a transmission path. We propose to formulate the path selection approach as a minimum cost flow problem.

  • Time-Frequency Cyclic Shift Keying Transceiver for Low PAPR MC-CDMA Uplink System over Multipath Fading Channels

    Juinn-Horng DENG  Jeng-Kuang HWANG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3651-3655

    A low peak-to-average-power-ratio (PAPR) transceiver with a time-frequency cyclic shift orthogonal keying (TF-CSOK) technique is proposed for the uplink multi-carrier CDMA (MC-CDMA) system over multiple access interference (MAI) and multipath interference (MPI) channels. The low complexity structure of the TF-CSOK MC-CDMA system is designed to involve the FCSOK and TCSOK techniques to combat MPI and MAI effects, respectively. In particular, at the besestation, the multiuser detector employs the maximum likelihood (ML) rule and the TFSOK despreading and demapping techniques to acquire the M-ary modulation gain and diversity gain. Simulation results show that the multuser receiver has the robustness against strong MAI. Moreover, it outperforms the conventional single-carrier frequency division multiple access (SC-FDMA) system and the conventional MC-CDMA system under MAI and MPI environments.

  • A Decentralized Clustering Scheme for Dynamic Downlink Base Station Cooperation

    Sheng ZHOU  Jie GONG  Yunjian JIA  Zhisheng NIU  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    3656-3659

    Base station (BS) cooperation is a promising technique to suppress co-channel interference for cellular networks. However, practical limitations constrain the scale of cooperation, thus the network is divided into small disjoint BS cooperation groups, namely clusters. A decentralized scheme for BS cluster formation is proposed based on efficient BS negotiations, of which the feedback overhead per user is nearly irrelevant to the network size, and the number of iteration rounds scales very slowly with the network size. Simulations show that our decentralized scheme provides significant sum-rate gain over static clustering and performs almost the same as the existing centralized approach. The proposed scheme is well suited for large-scale cellular networks due to its low overhead and complexity.

  • Patching with a Variable Segment VOD Scheduling

    Chan-Gun LEE  Yong-Jin JI  Ho-Hyun PARK  Jae-Hwa PARK  Sungrae CHO  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    3660-3663

    The patching technique has been used for reducing initial waiting time in VOD services. Traditionally the technique has been applied to fixed segment NVOD scheduling. However, variable segment NVOD scheduling is known to have a better server bandwidth and less initial waiting time. In this paper, we propose a new scheduling algorithm for a true VOD service by incorporating the patching technique into variable segment NVOD scheduling. Our algorithm provides jitter-free playback while minimizing the use of the patching bandwidth. We present the proof of the correctness of our algorithm.