The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.40

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E96-A No.3  (Publication Date:2013/03/01)

    Regular Section
  • Transform Domain Shadow Removal for Foreground Silhouette

    Toshiaki SHIOTA  Kazuki NAKAGAMI  Takao NISHITANI  

     
    PAPER-Digital Signal Processing

      Page(s):
    667-674

    A novel shadow removal approach is proposed by using block-wise transform domain shadow detection. The approach is based on the fact that the spatial frequency distributions on normal background areas and those under casted shadows from foreground objects are the same. The proposed approach is especially useful for silhouette extraction by using the Gaussian Mixture background Model (GMM) foreground segmentation in the transform domain, because the frequency distribution has already been calculated in the foreground segmentation. The stable shadow removal is realized, due to the transform domain implementation.

  • An Algorithm for Obtaining the Inverse for a Given Polynomial in Baseband

    Yuelin MA  Yasushi YAMAO  Yoshihiko AKAIWA  

     
    PAPER-Digital Signal Processing

      Page(s):
    675-683

    Compensation for the nonlinear systems represented by polynomials involves polynomial inverse. In this paper, a new algorithm is proposed that gives the baseband polynomial inverse with a limited order. The algorithm employs orthogonal basis that is predetermined from the distribution of input signal and finds the coefficients of the inverse polynomial to minimize the mean square error. Compared with the well established p-th order inverse method, the proposed method can suppress the distortions better including higher order distortions. It is also extended to obtain memory polynomial inverse through a feedback-configured structure. Both numerical simulations and experimental results demonstrate that the proposed algorithm can provide good performance for compensating the nonlinear systems represented by baseband polynomials.

  • Jitter Amplifier for Oscillator-Based True Random Number Generator

    Takehiko AMAKI  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER-Cryptography and Information Security

      Page(s):
    684-696

    We propose a jitter amplifier architecture for an oscillator-based true random number generator (TRNG). Two types of latency-controllable (LC) buffer, which are the key components of the proposed jitter amplifier, are presented. We derive an equation to estimate the gain of the jitter amplifier, and analyze sufficient conditions for the proposed circuit to work properly. The proposed jitter amplifier was fabricated with a 65 nm CMOS process. The jitter amplifier with the two-voltage LC buffer occupied 3,300 µm2 and attained 8.4x gain, and that with the single-voltage LC buffer achieved 2.2x gain with an 1,700 µm2 area. The jitter amplification of the sampling clock increased the entropy of a bit stream and improved the results of the NIST test suite so that all the tests passed whereas TRNGs with simple correctors failed. The jitter amplifier attained higher throughput per area than a frequency divider when the required amount of jitter was more than two times larger than the inherent jitter in our test-chip implementations.

  • Correlation Power Analysis and Countermeasure on the Stream Cipher Enocoro-128v2

    Shugo MIKAMI  Hirotaka YOSHIDA  Dai WATANABE  Kazuo SAKIYAMA  

     
    PAPER-Cryptography and Information Security

      Page(s):
    697-704

    Enocoro-128v2 is a lightweight stream cipher submitted to Cryptography Research and Evaluation Committees (CRYPTREC). In this paper, we first describe a side channel attack on Enocoro-128v2. We show that all secret key bytes of Enocoro-128v2 can be recovered by correlation power analysis, and it is shown by an experiment that around 6000 traces are needed to recover the secret key on SASEBO-GII (Side-channel Attack Standard Evaluation Board). We second propose a countermeasure with threshold implementation technique, which allows Enocoro-128v2 to be resistant against correlation power analysis as long as less than 105 traces are used.

  • Symbol-Rate Clock Recovery for Integrating DFE Receivers

    Tsutomu TAKEYA  Tadahiro KURODA  

     
    PAPER-Communication Theory and Signals

      Page(s):
    705-712

    In this paper, a symbol-rate clock recovery scheme for a receiver that uses an integrating decision feedback equalizer (DFE) is proposed. The proposed clock recovery using expected received signal amplitudes as the criterion realizes minimum mean square error (MMSE) clock recovery. A receiver architecture using an integrating DFE with the proposed symbol-rate clock recovery is also proposed. The proposed clock recovery algorithm successfully recovered the clock phase in a system level simulation only with a DFE. Higher jitter tolerance than 0.26 UIPP at 10 Gb/s operation was also confirmed in the simulation with an 11 dB channel loss at 5 GHz.

  • Development and Evaluation of a Wide Range Impulse Current Generator for Surge Arrester Testing

    Kuo-Hsiung TSENG  Ching-Lin HUANG  Pei-Yu CHENG  Zih-Ciao WEI  

     
    PAPER-Measurement Technology

      Page(s):
    713-720

    This paper is focused on discussing a low-voltage system for lightning, and in particular the testing equipment of surge arresters. Only by demonstrating the performance and applicability of arresters can we seek the most feasible and economic low-voltage solutions. After performing repeated experiments with the same testing samples, using different testing equipment, we compare the different test results in order to select the most suitable and applicable testing equipment. In addition, the basis of a surge current parameter design theory is confirmed and verified through the test results using a simple and compact Impulse Current Generator to test a wide range of samples. By performing the actual analyzes and experiments, we can understand deeply how R, L, and C affect surge current, current wave, and current wave time. The ideal testing equipment standards have been set as follows: (1) Test Voltage up to 20 kV; (2) Expand current range from 1.5 kA to 46.5 kA, with resolution 1.5 kA; and (3) Simple operational procedures.

  • On the Security of an Identity-Based Proxy Signature Scheme in the Standard Model

    Ying SUN  Yong YU  Xiaosong ZHANG  Jiwen CHAI  

     
    LETTER-Cryptography and Information Security

      Page(s):
    721-723

    Observing the security of existing identity-based proxy signature schemes was proven in the random oracle model, Cao et al. proposed the first direct construction of identity-based proxy signature secure in the standard model by making use of the identity-based signature due to Paterson and Schuldt. They also provided a security proof to show their construction is secure against forgery attacks without resorting to the random oracles. Unfortunately, in this letter, we demonstrate that their scheme is vulnerable to insider attacks. Specifically, after a private-key extraction query, an adversary, behaving as a malicious original signer or a malicious proxy signer, is able to violate the unforgeability of the scheme.

  • Improving User's Privacy for Multi-Authority ABE Using Privacy Homomorphism

    Ang GAO  Zeng-Zhi LI  

     
    LETTER-Cryptography and Information Security

      Page(s):
    724-727

    In order to improve user's privacy in multi-authority Attribute-Based Encryption (ABE), we propose a solution which hides user's attributes by privacy homomorphism, such that not only the “external” adversary fails to access the private attribute of one user by eavesdropping on communications, but also the “internal” Attribute Authorities (AA), who are responsible for issuing attribute keys, are unable to build a full profile with all of the user's attributes by pooling their information on the user's ID. Meanwhile, the use of ID is essential to defend against collusion attack on ABE. Benefiting from privacy homomorphism, by which we distribute the part of the interpolation for the shares abstracted by the hidden attributes into each AA, the performance of the proposed scheme is higher than those of existing ABE schemes.

  • Optimal Power Allocation with Max-Min Fairness in a Non-orthogonal AF Relay-Assisted Uplink Transmission

    Peng GONG  Ping LI  Duk Kyung KIM  

     
    LETTER-Communication Theory and Signals

      Page(s):
    728-731

    In this letter, unlike the previous work in [2], the optimal power allocation in a non-orthogonal, amplify-and-forward (AF) relay-assisted transmission is investigated in the uplink. Here, the inter-user-interference among the signals from MTs and relays exists due to non-zero interference suppression factor (ISF), i.e., finite spreading factor. In this letter, we show that the optimal solution to achieve a 'max-min fairness' among mobile terminals can be alternatively obtained by solving its inverse problem. The impact of various ISFs as well as the Jain's fairness is investigated in comparison with the equal power allocation.

  • Outage Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity and Outdated CSI under Asymmetric Fading

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    732-736

    Spectrum sharing cognitive radio (CR) with maximal ratio combining (MRC) diversity under asymmetric fading is studied. Specifically, the channel on the secondary transmitter (STx) to the secondary receiver (SRx) link is Nakagami-m distributed while the channel on the STx to the primary receiver (PRx) link is Rayleigh distributed, and the channel state information (CSI) on the STx-PRx link is assumed to be outdated due to feedback delay. The outage capacity of the secondary user (SU) is derived under the average interference and peak transmit power constraints. The results supported by simulations are presented and show the effects of various system parameters on the outage capacity. Particularly, it is shown that the outdated CSI has no impact on the outage capacities in the cases of low peak transmit power constraint and zero-outage probability. It is also shown that MRC diversity can significantly improve the outage capacity especially for the zero-outage capacity and the outage capacity under low outage probability.

  • Alternate Time-Switched Space-Time Block Coding Technique for Single Carrier Modulation

    Hyeok Koo JUNG  

     
    LETTER-Communication Theory and Signals

      Page(s):
    737-739

    This paper proposes an alternate time-switched transmission technique for single carrier modulation system with frequency domain equalization. Additional maximal ratio combining diversity gain is obtained by adding a transmit antenna and a switch. Alternating transmit symbols result in zeros which make maximal ratio receive combining possible in the receiver. Simulation results show that it has better performance than the traditional algorithm at the expense of one additional antenna.

  • The Impact of Sub-Band Spreading Bandwidth on DS-MB-UWB System over Multipath and Narrowband Interference

    Chin-Sean SUM  Hiroshi HARADA  

     
    LETTER-Spread Spectrum Technologies and Applications

      Page(s):
    740-744

    In this paper, we investigate the impact of different sub-band spreading bandwidth (SSBW) on a direct sequence (DS) multiband (MB) ultra wideband (UWB) system in multipath and narrowband interference over realistic UWB channel models based on actual measurements. As an approach to effectively mitigate multipath and narrowband interference, the DS-MB-UWB system employs multiple sub-bands instead of a wide single band for data transmission. By using spreading chips with different duration settings, the SSBW can be manipulated. As a result, it is observed that increasing SSBW does not always improve system performance. Optimum SSBW values exist and are found to vary in accordance to different operating parameters such as the number of sub-bands and types of propagation channel model. Additionally, we have also found that system performance in the presence of narrowband interference is heavily dependent on the number of employed sub-bands.

  • Double-Scale Channel Prediction for Precoded TDD-MIMO Systems

    De-Chun SUN  Zu-Jun LIU  Ke-Chu YI  

     
    LETTER-Mobile Information Network and Personal Communications

      Page(s):
    745-746

    In precoded TDD MIMO systems, precoding is done based on the downlink CSI, which can be predicted according to the outdated uplink CSI. This letter proposes a double-scale channel prediction scheme where frame-scale Kalman filters and pilot-symbol-scale AR predictors jointly predict the needed downlink CSI.