The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

16641-16660hit(20498hit)

  • Novel Optical-Regenerator Using Electroabsorption Modulators

    Tetsuya MIYAZAKI  Tomohiro OTANI  Noboru EDAGAWA  Masatoshi SUZUKI  Shu YAMAMOTO  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E82-C No:8
      Page(s):
    1414-1419

    We have proposed and demonstrated a novel optical regenerator architecture employing electroabsorption modulators as wavelength converters. The employment of EA modulators is advantageous for high-speed operation and flexibility in the bit-rate for the pulse regeneration. In addition, the EA modulator-wavelength-converter acts also as a photo diode for clock extraction. Compensation of the optical SNR and Q-factor has been demonstrated, even in cascaded noise load. Furthermore, against dispersion loading, we have confirmed that waveform recovery and Q-factor improvement is obtained by midway insertion of the optical regenerator. The proposed architecture will offer a wide-band-electronics-free optical regenerator in multi-tens of gigabit per second WDM networks.

  • Global Motion Parameter Extraction and Deformable Block Motion Estimation

    Chi-Hsi SU  Hsueh-Ming HANG  David W. LIN  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:8
      Page(s):
    1210-1218

    A global motion parameter estimation method is proposed. The method can be used to segment an image sequence into regions of different moving objects. For any two pixels belonging to the same moving object, their associated global motion components have a fixed relationship from the projection geometry of camera imaging. Therefore, by examining the measured motion vectors we are able to group pixels into objects and, at the same time, identify some global motion information. In the presence of camera zoom, the object shape is distorted and conventional translational motion estimation may not yield accurate motion modeling. A deformable block motion estimation scheme is thus proposed to estimate the local motion of an object in this situation. Some simulation results are reported. For an artificially generated sequence containing only zoom activity, we find that the maximum estimation error in the zoom factor is about 2. 8 %. Rather good moving object segmentation results are obtained using the proposed object local motion estimation method after zoom extraction. The deformable block motion compensation is also seen to outperform conventional translational block motion compensation for video material containing zoom activity.

  • A Guard Time Estimation Method for TCM-TDMA PDS System Considering N-th Order Fresnel Reflections

    Norio TAMAKI  Hideaki KIMURA  Ryuichi WATANABE  

     
    PAPER-Optical Communication

      Vol:
    E82-B No:8
      Page(s):
    1311-1317

    Minimizing the guard time, Tguard, in the TCM-TDMA PDS scheme is essential in maximizing TCM transmission efficiency. As a replacement for the commonly adopted worst-case approach to TCM-TDMA PDS system estimation, this paper proposes a statistical approach. The level distributions of losses and n-th order Fresnel reflections are determined from published measurements. The proposed approach estimates the reflection of the optical access network.

  • An Optoelectronic Clock Recovery Circuit Using a Resonant Tunneling Diode and a Uni-Traveling-Carrier Photodiode

    Koichi MURATA  Kimikazu SANO  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Eiichi SANO  Masafumi YAMAMOTO  Tadao ISHIBASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1228-1235

    A clock recovery circuit is a key component in optical communication systems. In this paper, an optoelectronic clock recovery circuit is reported that monolithically integrates a resonant tunneling diode (RTD) and a uni-traveling-carrier photodiode (UTC-PD). The circuit is an injection-locked-type RTD oscillator that uses the photo-current generated by the UTC-PD. Fundamental and sub-harmonic clock extraction is confirmed for the first time with good clock recovery circuit characteristics. The IC extracts an electrical 11.55-GHz clock signal from 11.55-Gbit/s RZ optical data streams with the wide locking range of 450 MHz and low power dissipation of 1.3 mW. Furthermore, the extraction of a sub-harmonic clock from 23.1-Gbit/s and 46.2-Gbit/s input data streams is also confirmed in the wider locking range of 600 MHz. The RMS jitter as determined from a single sideband phase noise measurement is extremely low at less than 200 fs in both cases of clock and sub-harmonic clock extraction. To our knowledge, the product of the output power and operating frequency of the circuit is the highest ever reported for injection-locked-type RTD oscillators. These characteristics indicate the feasibility of the optoelectronic clock recovery circuit for use in future ultra-high-speed fully monolithic receivers.

  • Adaptive Line Enhancers on the Basis of Least-Squares Algorithm for a Single Sinusoid Detection

    Koji MATSUURA  Eiji WATANABE  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1536-1543

    This paper proposes adaptive line enhancers with new coefficient update algorithms on the basis of least-square-error criteria. Adaptive algorithms by least-squares are known to converge faster than stochastic-gradient ones. However they have high computational complexity due to matrix inversion. To avoid matrix inversion the proposed algorithms adapt only one coefficient to detect one sinusoid. Both FIR and IIR types of adaptive algorithm are presented, and the techniques to reduce the influence of additive noise is described in this paper. The proposed adaptive line enhancers have simple structures and show excellent convergence characteristics. While the convergence of gradient-based algorithms largely depend on their stepsize parameters, the proposed ones are free from them.

  • Differential Processing Using an Arrayed-Waveguide Grating

    Hirokazu TAKENOUCHI  Hiroyuki TSUDA  Chikara AMANO  Takashi GOH  Katsunari OKAMOTO  Takashi KUROKAWA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1518-1524

    This paper reports on time-space conversion-based differential processing of optical signals using a high-resolution arrayed-waveguide grating (AWG) and a spatial filter at a wavelength of 1.55 µm. We clarify the advantages of the AWG device and show where it is applicable. In order to reduce loss at the spatial filter, we propose a new phase-only filter that functions as a differential filter. The difference between the exact differential filter and the proposed phase-only filter is calculated theoretically. We confirm experimentally that the optical pulse can be differentiated by the proposed filter. For application of differential processing, we also proposed a phase modulation to amplitude modulation (PM-AM) conversion and demonstrated the PM-AM conversion at 10 Gbit/s signals using a PSK-non-return-to-zero (NRZ) format.

  • Bandwidth and Transmission Distance Achieved by POF

    Yasuhiro KOIKE  Takaaki ISHIGURE  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E82-B No:8
      Page(s):
    1287-1295

    Recent status of the polymer optical fiber (POF) for high speed data communication and telecommunication is reviewed. The GI POF was proposed for the first time 20 years ago at Keio University, and several methodologies to fabricate GI POF have been currently proposed worldwide. In this paper, we both theoretically and experimentally verify that the most transparent GI POF can be obtained by the polymer-dopant system. The relation between the refractive index profile and the dispersion characteristics of the GI POF was quantitatively clarified. The refractive index profile of the GI POF obtained by the interfacial-gel polymerization process was controlled to enable to transmit the order of gigabit per second bit rate. Furthermore, the accurate approximation of the refractive index profile and consideration of mode dependent attenuation enabled to precisely predict the dispersion characteristics of the GI POF.

  • Transient Phenomena of Electromagnetic Waves by the Abrupt Extinction of Interior Terminative Conducting Screen in Waveguide

    Michinari SHIMODA  Ryuichi IWAKI  Masazumi MIYOSHI  Oleg A. TRETYAKOV  

     
    PAPER-Electromagnetic Theory

      Vol:
    E82-C No:8
      Page(s):
    1584-1591

    The problem of transient scattering caused by abrupt extinction of a terminative conducting screen in a waveguide is considered. First, a boundary-value problem is formulated to describe the transient phenomena, the problem in which the boundary condition depends on time. Then, application of the Fourier transformation with respect to time derives a Wiener-Hopf-type equation, which is solved by a commonly known decomposition procedure. The transient fields are obtained through the deformation of the integration path for the inverse transformation and the results are represented in terms of the incomplete Lipschitz-Hankel integrals. Numerical examples showing typical transient phenomena are attached.

  • Analysis of Dispersion-Managed Optical Fiber Transmission System Using Non-Return-to-Zero Pulse Format and Performance Restriction from Third-Order Dispersion

    Xiaomin WANG  Kazuro KIKUCHI  Yuichi TAKUSHIMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E82-C No:8
      Page(s):
    1407-1413

    We analyze the dispersion-managed optical transmission system for the non-return-to-zero (NRZ) pulse format. First, we investigate the physical image of dispersion management by computing small-signal-based transfer functions, and summarize the dependence of transmission performance on system parameters. Next, the Q-map is computed numerically to design long-distance large-capacity dispersion-managed transmission systems for a single channel in a more detailed manner. It is shown that the third-order dispersion of fibers negatively influences transmission performance, and third-order dispersion compensation is proved to be an effective method for extending the transmission distance of high bit-rate systems. Utilizing these results, guidelines can be derived for the optimal design of long-distance large-capacity NRZ transmission systems.

  • Amplitude Probability Distribution of Intermodulation Distortion in Multichannel Digital Optical Cable Transmission

    Naoyoshi NAKAMURA  Takuya KURAKAKE  Yasuhiro ITO  Mikio MAEDA  Kimiyuki OYAMADA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E82-C No:8
      Page(s):
    1420-1427

    The statistical behavior of the amplitude probability distribution of intermodulation distortion interference in multichannel optical-cable TV systems was experimentally investigated. In multichannel transmission, the non-linearity of a laser diode (LD) or an electrical amplifier can cause intermodulation distortion (composite-second-order beat; CSO, composite-triple-beat; CTB, etc. ). Even though it has been discussed as laser-clipping distortion, intermodulation distortion is usually distortion from AM-VSB carriers. The statistical analysis and evaluation of the distortion in transmitted channel is in controversial. We evaluated the distortion in 20 frequency-division-multiplexed 16-QAM channels, with each carrier carrying 80 Mbps for an optical cable TV system. We first enumerated the distortion components causing interference in each transmission channel so as to identify the intermodulation products. Then, in selected channels, we precisely measured the power of each kind of distortion and the amplitude distributions of the intermodulation distortion from sinusoidal and digital-modulated carriers on cable TV as a function of optical modulation depth (OMD) of LD. And we clarified how the probability distribution function (PDF) changed as the OMD increased. Also, the BER performance of a 16-QAM signal was measured and compare to the intermodulation behavior of the different distortion sources. We found evidence that the amplitude distribution of intermodulation distortion from digital carriers differs from that of thermal noise. Experimental results showed that the PDF of the intermodulation distortion changed when the ratio of intermodulation distortion among all undesired signals varied with the OMD. The BER performance varied with intermodulation of both analogue and digital carriers even when the carrier to interference noise power ratio (CIR) is the same.

  • Skew-Compensation Technique for Parallel Optical Interconnections

    Takeshi SAKAMOTO  Nobuyuki TANAKA  Yasuhiro ANDO  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E82-C No:8
      Page(s):
    1428-1434

    We have developed a low-latency, error-correcting-code-(ECC-)adaptable skew-compensation technique, which is needed for high-speed and long-distance parallel optical interconnections. A new frame-coding technique called shuffled mB1C encoding, which requires no clock-rate conversion circuit and no data buffering, and a new skew-measurement method which is suitable for ECC adaptation have been developed for the compensation. Full-digital skew-compensation circuits using these new techniques were able to compensate for a two-clock-cycle skew, even when one transmission channel was removed. The maximum latency for skew compensation was only five clock cycles.

  • A 1.3-µm Optical Transceiver Diode (TRAD) Module for TCM Transmission Systems in Optical Access Networks

    Yasumasa SUZAKI  Masanobu OKAYASU  Takeshi KUROSAKI  Makoto NAKAMURA  Yasuhiro SUZUKI  Hideaki KIMURA  Hiromu TOBA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1460-1464

    We developed an optical transceiver diode (TRAD) module for bi-directional time-compression-multiplexing (TCM) transmission systems. A wavelength-insensitive structure as a receiver and a low-capacitance configuration in the module provide a high sensitivity. Stable switching of 156 Mbit/s NRZ burst signals between the transmitter and receiver modes is achieved. In addition, it is shown that optical module cost can be further reduced by using passive alignment on a Si bench.

  • Wavelength Converters

    Allan KLOCH  Peter Bukhave HANSEN  David WOLFSON  Tina FJELDE  Kristian STUBKJAER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1475-1486

    After a short introduction to the different requirements to and techniques for wavelength conversion, focus is on cross-gain and cross-phase modulation in SOA based converters. Aspects like jitter accumulation, regeneration and conversion to the same wavelength is discussed. It is predicted that jitter accumulation can be minimised while also assuring a high extinction ratio by using a 9-10 dB ratio between the signal and CW power. Using this guideline simulations show that 20 cross-gain modulation converters can be cascaded at 10 Gbit/s with only 20 ps of accumulated jitter and an extinction ratio of 10 dB. The regenerative capabilities of the cross-phase converters are described and verified experimentally at 20 Gbit/s. By controlling the input power to an EDFA, the noise redistribution and improvement of the signal-to-noise ratio is demonstrated. In a similar experiment at 2.5 Gbit/s, the regeneration causes a reduction of the required input power to an in-line EDFA of 6 dB for a power penalty of 1 dB at a bit error rate of 10-9. If two converters are concatenated the power requirement is reduced 8 dB. Obviously, the power reduction allows for longer spans between in-line EDFAs. A simple scheme for regeneration without wavelength conversion is assessed at 2.5 Gbit/s resulting in 4.5 dB lower required EDFA input power. The scheme is characterised by a quasi-digital transfer function that is ideal for regeneration. A combination of cross-gain and cross-phase conversion is used to perform conversion to the same wavelength at 20 Gbit/s. The insertion penalty for this dual-stage converter is below 2 dB and is mainly caused by extinction ratio degradation from the cross-gain converter. Finally, a new device for all-optical wavelength conversion has been proposed and 2.5 Gbit/s operation has been simulated with good results.

  • A 1.55-µm Hybrid Integrated Wavelength-Converter Module Using Spot-Size Converter Integrated Semiconductor Optical Amplifiers on a Planar-Lightwave-Circuit Platform

    Rieko SATO  Yasuhiro SUZUKI  Naoto YOSHIMOTO  Ikuo OGAWA  Toshikazu HASHIMOTO  Toshio ITO  Akio SUGITA  Yuichi TOHMORI  Hiromu TOBA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1487-1493

    A 1.55-µm hybrid integrated wavelength-converter module was fabricated using a two-channel spot-size converter integrated semiconductor optical amplifier (SS-SOA) on a planar-lightwave-circuit (PLC) platform. Clear eye opening and penalty-free wavelength conversion were obtained at 2.5-Gb/s modulation with a wide wavelength difference of 46 nm. The module showed good characteristics including low insertion loss (0.1 dB), and high conversion efficiency (-0.2 dB). It also showed stable wavelength conversion for as wide as a 13 temperature range.

  • Light Modulation by Polariton Directional-Coupler-Type Devices

    Kazuhiko HOSOMI  Masataka SHIRAI  Junji SHIGETA  Tomoyoshi MISHIMA  Toshio KATSUYAMA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1509-1513

    A GaAs/AlGaAs directional-coupler-type device that use polariton propagation was fabricated and its switching operation was demonstrated. The length of the switching region is as small as 300 µm. The output signal modulation under an electric field shows typical characteristics of directional-coupler type switching. The measured operation voltage is 2 V for an operation wavelength of 805 nm at 10 K. The corresponding signal extinction ratio is 8 dB. These experimental results confirm the efficient operation of the polariton devices, which can be applied to especially small optical -switching devices with low-voltage operation.

  • An Optical Add-Drop Multiplexer with a Grating-Loaded Directional Coupler in Silica Waveguides

    Naoki OFUSA  Takashi SAITO  Tsuyoshi SHIMODA  Tadahiko HANADA  Yutaka URINO  Mitsuhiro KITAMURA  

     
    INVITED PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1514-1517

    An optical add-drop multiplexer with a grating-loaded directional coupler in silica waveguides is demonstrated. The device for this configuration has a large fabrication tolerance and is small in size. A new scheme, in which the coupling length of the directional coupler is twice the complete coupling length, enables low cross-talk for both add and drop operations. This device is polarization-independent due to its relatively low-temperature process.

  • Precisely Molded Plastic V-Grooved Alignment Parts for Multi-Port Optical Devices

    Michiyuki AMANO  Yasuaki TAMURA  Fumiaki HANAWA  Hirotsugu SATO  Norio TAKATO  Shun-ichi TOHNO  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1525-1530

    Precise plastic V-grooved alignment parts for connecting single-mode optical fiber arrays to multi-port optical devices were successfully molded with a thermosetting resin by using a highly productive injection molding technique. The molded parts are two types of V-grooved blocks that are compatible with the size of optical devices having eight or twelve optical ports. Their dimensional accuracy must be better than 1 µm over the whole length of the V-grooves for efficient optical coupling. This strict requirement was satisfied using precisely processed molding tools with a specially chosen resin under optimum molding conditions. The feasibility of the optical alignment parts was assured by an evaluation of their loss characteristics and reliability in coupling single-mode fibers to 18 power splitters, where the average optical loss was 0.2 dB and the change in loss was less than 0.2 dB under a temperature cycling test and also under a damp heat test. These results show that plastic molded parts can be used for precise coupling of single-mode optical devices, and will lead to a breakthrough in innovation in the field of optical packaging.

  • Use of the Coaxial-Core Profile in the Erbium-Doped Fiber Amplifier for Self-Regulation of Gain Spectrum

    Jaedeuk LEE  Hugh SONG  Kyunghwan OH  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E82-C No:8
      Page(s):
    1539-1548

    Coaxial-core erbium-doped fiber amplifiers (EDFA's) having a property of self-regulated gain spectrum are developed. The operation of a coaxial-core EDFA is based on the partial separation of the light paths for different wavelength channels in the directionally-coupled waveguides of a coaxial-core geometry. The degree of channel equalization depends on the geometrical and optical parameters of the coaxial-core EDFA and on relative channel power levels. A numerical analysis based on the coupled-mode theory and on the rate equation shows that, under fully optimized conditions, a coaxial-core EDFA provides equalization rates in excess of -0.4 dB per dB of input-power imbalance in the case with two WDM channels. A cascade experiment demonstrates the effect of coaxial-core EDFA's toward channel-power equalization in fiber links with a small number of WDM channels.

  • Thermal Poling of Boron-Codoped Germanosilicate Fibre

    Wei XU  Mark JANOS  Danny WONG  Simon FLEMING  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E82-C No:8
      Page(s):
    1549-1552

    The dependence of a linear electro-optic (LEO) coefficient induced into boron-codoped germanosilicate fibre on thermal poling conditions (poling voltage, poling temperature and poling time) has been systematically carried out using a Mach-Zehnder interferometer. The LEO coefficient increases as a 2.7 power law with the poling voltage; it can be maximally induced into the silica fibre within a temperature range from 250 to 300; it exponentially increases with poling time until saturation but after that it then decreases. Possible mechanisms of thermal poling are discussed in the light of the experimental results.

  • Multiwavelength Opaque Optical-Crossconnect Networks

    Evan L. GOLDSTEIN  Lih Y. LIN  Robert W. TKACH  

     
    INVITED PAPER-Communication Networks

      Vol:
    E82-C No:8
      Page(s):
    1361-1370

    Over roughly the past decade, the lightwave-research community has converged upon a broad architectural vision of the emerging national-scale core network. The vision has been that of a transparent, reconfigurable, wavelength-routed network, in which signals propagate from source to destination through a sequence of intervening nodes without optoelectronic conversion. Broad benefits have been envisioned. Despite the spare elegance of this vision, it is steadily becoming clear that due to the performance, cost, management, and multivendor-interoperability obstacles attending transparency, the needs of civilian communications will not drive the core network to transparency on anything like a national scale. Instead, they will drive it to 'opaque' form, with critical reliance on optoelectronic conversion via transponders. Transponder-based network architectures in fact not only offer broad transmission and manageability benefits. They also make networking at the optical layer possible by offering to the nodes managed and performance-engineered standard-interface signals that can then be reconfigured for provisioning and restoration purposes by optical-layer elements. Because of this, the more pressing challenges in lightwave networking are steadily shifting towards the mechanisms that will be used for provisioning and restoration. Among these are mechanisms based on free-space micromachined optical crossconnects. We describe recent progress on these new devices and the architectures into which they fit, and summarize the reasons why they appear to be particularly well-matched to the task of provisioning and restoring opaque multiwavelength core long-haul networks.

16641-16660hit(20498hit)