The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] GIS(222hit)

1-20hit(222hit)

  • CRLock: A SAT and FALL Attacks Resistant Logic Locking Method for Controller at Register Transfer Level

    Masayoshi YOSHIMURA  Atsuya TSUJIKAWA  Toshinori HOSOKAWA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/09/04
      Vol:
    E107-A No:3
      Page(s):
    583-591

    In recent years, to meet strict time-to-market constraints, it has become difficult for only one semiconductor design company to design a VLSI. Thus, design companies purchase IP cores from third-party IP vendors and design only the necessary parts. On the other hand, since IP cores have the disadvantage that copyright infringement can be easily performed, logic locking has to be applied to them. Functional logic locking methods using TTLock are resilient to SAT attacks however vulnerable to FALL attacks. Additionally, it is difficult to design logic locking based on TTLock at the gate level. This paper proposes a logic locking method, CRLock, based on SAT attack and FALL attack resistance at the register transfer level. The CRLock is a logic locking method for controllers at RTL in which the designer selects a protected input pattern and modifies the controller based on the protection input pattern. In experimental results, we applied CRLock to MCNC'91 benchmark circuits and showed that all circuits are resistant to SAT and FALL attacks.

  • A Fully Analog Deep Neural Network Inference Accelerator with Pipeline Registers Based on Master-Slave Switched Capacitors

    Yaxin MEI  Takashi OHSAWA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2023/03/08
      Vol:
    E106-C No:9
      Page(s):
    477-485

    A fully analog pipelined deep neural network (DNN) accelerator is proposed, which is constructed by using pipeline registers based on master-slave switched capacitors. The idea of the master-slave switched capacitors is an analog equivalent of the delayed flip-flop (D-FF) which has been used as a digital pipeline register. To estimate the performance of the pipeline register, it is applied to a conventional DNN which performs non-pipeline operation. Compared with the conventional DNN, the cycle time is reduced by 61.5% and data rate is increased by 160%. The accuracy reaches 99.6% in MNIST classification test. The energy consumption per classification is reduced by 88.2% to 0.128µJ, achieving an energy efficiency of 1.05TOPS/W and a throughput of 0.538TOPS in 180nm technology node.

  • Parts Supply Support Method for Leveling Workload in In-Process Logistics

    Noriko YUASA  Masahiro YAMAGUCHI  Kosuke SHIMA  Takanobu OTSUKA  

     
    PAPER

      Pubricized:
    2022/10/20
      Vol:
    E106-D No:4
      Page(s):
    469-476

    At manufacturing sites, mass customization is expanding along with the increasing variety of customer needs. This situation leads to complications in production planning for the factory manager, and production plans are likely to change suddenly at the manufacturing site. Because such sudden fluctuations in production often occur, it is particularly difficult to optimize the parts supply operations in these production processes. As a solution to such problems, Industry 4.0 has expanded to promote the use of digital technologies at manufacturing sites; however, these solutions can be expensive and time-consuming to introduce. Therefore, not all factory managers are favorable toward introducing digital technology. In this study, we propose a method to support parts supply operations that decreases work stagnation and fluctuation without relying on the experience of workers who supply parts in the various production processes. Furthermore, we constructed a system that is inexpensive and easy to introduce using both LPWA and BLE communications. The purpose of the system is to level out work in in-process logistics. In an experiment, the proposed method was introduced to a manufacturing site, and we compared how the workload of the site's workers changed. The experimental results show that the proposed method is effective for workload leveling in parts supply operations.

  • Pumping Lemmas for Languages Expressed by Computational Models with Registers

    Rindo NAKANISHI  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/14
      Vol:
    E106-D No:3
      Page(s):
    284-293

    Register automaton (RA), register context-free grammar (RCFG) and register tree automaton (RTA) are computational models with registers which deal with data values. This paper shows pumping lemmas for the classes of languages expressed by RA, RCFG and RTA. Among them, the first lemma was already proved in terms of nominal automata, which is an abstraction of RA. We define RTA in a deterministic and bottom-up manner. For these languages, the notion of ‘pumped word’ must be relaxed in such a way that a pumped subword is not always the same as the original subword, but is any word equivalent to the original subword in terms of data type defined in this paper. By using the lemmas, we give examples of languages that do not belong to the above-mentioned classes of languages.

  • A Subclass of Mu-Calculus with the Freeze Quantifier Equivalent to Register Automata

    Yoshiaki TAKATA  Akira ONISHI  Ryoma SENDA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/25
      Vol:
    E106-D No:3
      Page(s):
    294-302

    Register automaton (RA) is an extension of finite automaton by adding registers storing data values. RA has good properties such as the decidability of the membership and emptiness problems. Linear temporal logic with the freeze quantifier (LTL↓) proposed by Demri and Lazić is a counterpart of RA. However, the expressive power of LTL↓ is too high to be applied to automatic verification. In this paper, we propose a subclass of modal µ-calculus with the freeze quantifier, which has the same expressive power as RA. Since a conjunction ψ1 ∧ ψ2 in a general LTL↓ formula cannot be simulated by RA, the proposed subclass prohibits at least one of ψ1 and ψ2 from containing the freeze quantifier or a temporal operator other than X (next). Since the obtained subclass of LTL↓ does not have the ability to represent a cycle in RA, we adopt µ-calculus over the subclass of LTL↓, which allows recursive definition of temporal formulas. We provide equivalent translations from the proposed subclass of µ-calculus to RA and vice versa and prove their correctness.

  • Reduction of Register Pushdown Systems with Freshness Property to Pushdown Systems in LTL Model Checking

    Yoshiaki TAKATA  Ryoma SENDA  Hiroyuki SEKI  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2022/05/27
      Vol:
    E105-D No:9
      Page(s):
    1620-1623

    Register pushdown system (RPDS) is an extension of pushdown system (PDS) that has registers for dealing with data values. An LTL model checking method for RPDS with regular valuations has been proposed in previous work; however, the method requires the register automata (RA) used for defining a regular valuation to be backward-deterministic. This paper proposes another approach to the same problem, in which the model checking problem for RPDS is reduced to that problem for PDS by constructing a PDS bisimulation equivalent to a given RPDS. This construction is simpler than the previous model checking method and does not require RAs deterministic or backward-deterministic, and the bisimulation equivalence clearly guarantees the correctness of the reduction. On the other hand, the proposed method requires every RPDS (and RA) to have the freshness property, in which whenever the RPDS updates a register with a data value not stored in any register or the stack top, the value should be fresh. This paper also shows that the model checking problem with regular valuations defined by general RA is undecidable, and thus the freshness constraint is essential in the proposed method.

  • Register Minimization and its Application in Schedule Exploration for Area Minimization for Double Modular Redundancy LSI Design

    Yuya KITAZAWA  Kazuhito ITO  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-A No:3
      Page(s):
    530-539

    Double modular redundancy (DMR) is to execute an operation twice and detect a soft error by comparing the duplicated operation results. The soft error is corrected by re-executing necessary operations. The re-execution requires error-free input data and registers are needed to store such necessary error-free data. In this paper, a method to minimize the required number of registers is proposed where an appropriate subgraph partitioning of operation nodes are searched. In addition, using the proposed register minimization method, a minimization of the area of functional units and registers required to implement the DMR design is proposed.

  • Feature Description with Feature Point Registration Error Using Local and Global Point Cloud Encoders

    Kenshiro TAMATA  Tomohiro MASHITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/10/11
      Vol:
    E105-D No:1
      Page(s):
    134-140

    A typical approach to reconstructing a 3D environment model is scanning the environment with a depth sensor and fitting the accumulated point cloud to 3D models. In this kind of scenario, a general 3D environment reconstruction application assumes temporally continuous scanning. However in some practical uses, this assumption is unacceptable. Thus, a point cloud matching method for stitching several non-continuous 3D scans is required. Point cloud matching often includes errors in the feature point detection because a point cloud is basically a sparse sampling of the real environment, and it may include quantization errors that cannot be ignored. Moreover, depth sensors tend to have errors due to the reflective properties of the observed surface. We therefore make the assumption that feature point pairs between two point clouds will include errors. In this work, we propose a feature description method robust to the feature point registration error described above. To achieve this goal, we designed a deep learning based feature description model that consists of a local feature description around the feature points and a global feature description of the entire point cloud. To obtain a feature description robust to feature point registration error, we input feature point pairs with errors and train the models with metric learning. Experimental results show that our feature description model can correctly estimate whether the feature point pair is close enough to be considered a match or not even when the feature point registration errors are large, and our model can estimate with higher accuracy in comparison to methods such as FPFH or 3DMatch. In addition, we conducted experiments for combinations of input point clouds, including local or global point clouds, both types of point cloud, and encoders.

  • LTL Model Checking for Register Pushdown Systems

    Ryoma SENDA  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/08/31
      Vol:
    E104-D No:12
      Page(s):
    2131-2144

    A pushdown system (PDS) is known as an abstract model of recursive programs. For PDS, model checking methods have been studied and applied to various software verification such as interprocedural data flow analysis and malware detection. However, PDS cannot manipulate data values from an infinite domain. A register PDS (RPDS) is an extension of PDS by adding registers to deal with data values in a restricted way. This paper proposes algorithms for LTL model checking problems for RPDS with simple and regular valuations, which are labelings of atomic propositions to configurations with reasonable restriction. First, we introduce RPDS and related models, and then define the LTL model checking problems for RPDS. Second, we give algorithms for solving these problems and also show that the problems are EXPTIME-complete. As practical examples, we show solutions of a malware detection and an XML schema checking in the proposed framework.

  • Planarized Nb 4-Layer Fabrication Process for Superconducting Integrated Circuits and Its Fabricated Device Evaluation

    Shuichi NAGASAWA  Masamitsu TANAKA  Naoki TAKEUCHI  Yuki YAMANASHI  Shigeyuki MIYAJIMA  Fumihiro CHINA  Taiki YAMAE  Koki YAMAZAKI  Yuta SOMEI  Naonori SEGA  Yoshinao MIZUGAKI  Hiroaki MYOREN  Hirotaka TERAI  Mutsuo HIDAKA  Nobuyuki YOSHIKAWA  Akira FUJIMAKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-C No:9
      Page(s):
    435-445

    We developed a Nb 4-layer process for fabricating superconducting integrated circuits that involves using caldera planarization to increase the flexibility and reliability of the fabrication process. We call this process the planarized high-speed standard process (PHSTP). Planarization enables us to flexibly adjust most of the Nb and SiO2 film thicknesses; we can select reduced film thicknesses to obtain larger mutual coupling depending on the application. It also reduces the risk of intra-layer shorts due to etching residues at the step-edge regions. We describe the detailed process flows of the planarization for the Josephson junction layer and the evaluation of devices fabricated with PHSTP. The results indicated no short defects or degradation in junction characteristics and good agreement between designed and measured inductances and resistances. We also developed single-flux-quantum (SFQ) and adiabatic quantum-flux-parametron (AQFP) logic cell libraries and tested circuits fabricated with PHSTP. We found that the designed circuits operated correctly. The SFQ shift-registers fabricated using PHSTP showed a high yield. Numerical simulation results indicate that the AQFP gates with increased mutual coupling by the planarized layer structure increase the maximum interconnect length between gates.

  • An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method

    Yu SONG  Xu QIAO  Yutaro IWAMOTO  Yen-Wei CHEN  Yili CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/05/14
      Vol:
    E104-D No:8
      Page(s):
    1359-1366

    Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propose an efficient deep learning-based coarse-to-fine approach to realize accurate landmark detection. In the coarse detection step, we train a deep learning-based deformable transformation model by using training samples. We register test images to the reference image (one training image) using the trained model to predict coarse landmarks' locations on test images. Thus, regions of interest (ROIs) which include landmarks can be located. In the fine detection step, we utilize trained deep convolutional neural networks (CNNs), to detect landmarks in ROI patches. For each landmark, there is one corresponding neural network, which directly does regression to the landmark's coordinates. The fine step can be considered as a refinement or fine-tuning step based on the coarse detection step. We validated the proposed method on public dataset from 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge. Compared with the state-of-the-art method, we not only achieved the comparable detection accuracy (the mean radial error is about 1.0-1.6mm), but also largely shortened the computation time (4 seconds per image).

  • Forward Regularity Preservation Property of Register Pushdown Systems

    Ryoma SENDA  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2020/10/02
      Vol:
    E104-D No:3
      Page(s):
    370-380

    It is well-known that pushdown systems (PDS) effectively preserve regularity. This property implies the decidability of the reachability problem for PDS and has been applied to automatic program verification. The backward regularity preservation property was also shown for an extension of PDS by adding registers. This paper aims to show the forward regularity preservation property. First, we provide a concise definition of the register model called register pushdown systems (RPDS). Second, we show the forward regularity preservation property of RPDS by providing a saturation algorithm that constructs a register automaton (RA) recognizing $post^{ast}_calP(L(calA))$ where $calA$ and $calP$ are a given RA and an RPDS, respectively, and $post^{ast}_calP$ is the forward image of the mapping induced by $calP$. We also give an example of applying the proposed algorithm to malware detection.

  • Digital Calibration Algorithm of Conversion Error Influenced by Parasitic Capacitance in C-C SAR-ADC Based on γ-Estimation

    Satoshi SEKINE  Tatsuji MATSUURA  Ryo KISHIDA  Akira HYOGO  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    516-524

    C-C successive approximation register analog-to-digital converter (C-C SAR-ADC) is space-saving architecture compared to SAR-ADC with binary weighted capacitive digital-to-analog converter (CDAC). However, the accuracy of C-C SAR-ADC is degraded due to parasitic capacitance of floating nodes. This paper proposes an algorithm calibrating the non-linearity by γ-estimation to accurately estimate radix greater than 2 required to realize C-C SAR-ADC. Behavioral analyses show that the radix γ-estimation error become within 1.5, 0.4 and 0.1% in case of 8-, 10- and 12-bit resolution ADC, respectively. SPICE simulations show that the γ-estimation satisfies the requirement of 10-bit resolution C-C SAR-ADC. The C-C SAR-ADC using γ-estimation achieves 9.72bit of ENOB, 0.8/-0.5LSB and 0.5/-0.4LSB of DNL/INL.

  • Universal Testing for Linear Feed-Forward/Feedback Shift Registers

    Hideo FUJIWARA  Katsuya FUJIWARA  Toshinori HOSOKAWA  

     
    PAPER-Dependable Computing

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1023-1030

    Linear feed-forward/feedback shift registers are used as an effective tool of testing circuits in various fields including built-in self-test and secure scan design. In this paper, we consider the issue of testing linear feed-forward/feedback shift registers themselves. To test linear feed-forward/feedback shift registers, it is necessary to generate a test sequence for each register. We first present an experimental result such that a commercial ATPG (automatic test pattern generator) cannot always generate a test sequence with high fault coverage even for 64-stage linear feed-forward/feedback shift registers. We then show that there exists a universal test sequence with 100% of fault coverage for the class of linear feed-forward/feedback shift registers so that no test generation is required, i.e., the cost of test generation is zero. We prove the existence theorem of universal test sequences for the class of linear feed-forward/feedback shift registers.

  • Generalized Register Context-Free Grammars

    Ryoma SENDA  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2019/11/21
      Vol:
    E103-D No:3
      Page(s):
    540-548

    Register context-free grammars (RCFG) is an extension of context-free grammars to handle data values in a restricted way. In RCFG, a certain number of data values in registers are associated with each nonterminal symbol and a production rule has the guard condition, which checks the equality between the content of a register and an input data value. This paper starts with RCFG and introduces register type, which is a finite representation of a relation among the contents of registers. By using register type, the paper provides a translation of RCFG to a normal form and ϵ-removal from a given RCFG. We then define a generalized RCFG (GRCFG) where an arbitrary binary relation can be specified in the guard condition. Since the membership and emptiness problems are shown to be undecidable in general, we extend register type for GRCFG and introduce two properties of GRCFG, simulation and progress, which guarantee the decidability of these problems. As a corollary, these problems are shown to be EXPTIME-complete for GRCFG with a total order over a dense set.

  • Register-Transfer-Level Features for Machine-Learning-Based Hardware Trojan Detection

    Hau Sim CHOO  Chia Yee OOI  Michiko INOUE  Nordinah ISMAIL  Mehrdad MOGHBEL  Chee Hoo KOK  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E103-A No:2
      Page(s):
    502-509

    Register-transfer-level (RTL) information is hardly available for hardware Trojan detection. In this paper, four RTL Trojan features related to branching statement are proposed. The Minimum Redundancy Maximum Relevance (mRMR) feature selection is applied to the proposed Trojan features to determine the recommended feature combinations. The feature combinations are then tested using different machine learning concepts in order to determine the best approach for classifying Trojan and normal branches. The result shows that a Decision Tree classification algorithm with all the four proposed Trojan features can achieve an average true positive detection rate of 93.72% on unseen test data.

  • New Pseudo-Random Number Generator for EPC Gen2

    Hiroshi NOMAGUCHI  Chunhua SU  Atsuko MIYAJI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2019/11/14
      Vol:
    E103-D No:2
      Page(s):
    292-298

    RFID enable applications are ubiquitous in our society, especially become more and more important as IoT management rises. Meanwhile, the concern of security and privacy of RFID is also increasing. The pseudorandom number generator is one of the core primitives to implement RFID security. Therefore, it is necessary to design and implement a secure and robust pseudo-random number generator (PRNG) for current RFID tag. In this paper, we study the security of light-weight PRNGs for EPC Gen2 RFID tag which is an EPC Global standard. For this reason, we have analyzed and improved the existing research at IEEE TrustCom 2017 and proposed a model using external random numbers. However, because the previous model uses external random numbers, the speed has a problem depending on the generation speed of external random numbers. In order to solve this problem, we developed a pseudorandom number generator that does not use external random numbers. This model consists of LFSR, NLFSR and SLFSR. Safety is achieved by using nonlinear processing such as multiplication and logical multiplication on the Galois field. The cycle achieves a cycle longer than the key length by effectively combining a plurality of LFSR and the like. We show that our proposal PRNG has good randomness and passed the NIST randomness test. We also shows that it is resistant to identification attacks and GD attacks.

  • Calibration of Turntable Based 3D Scanning Systems

    Duhu MAN  Mark W. JONES  Danrong LI  Honglong ZHANG  Zhan SONG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/05/30
      Vol:
    E102-D No:9
      Page(s):
    1833-1841

    The consistent alignment of point clouds obtained from multiple scanning positions is a crucial step for many 3D modeling systems. This is especially true for environment modeling. In order to observe the full scene, a common approach is to rotate the scanning device around a rotation axis using a turntable. The final alignment of each frame data can be computed from the position and orientation of the rotation axis. However, in practice, the precise mounting of scanning devices is impossible. It is hard to locate the vertical support of the turntable and rotation axis on a common line, particularly for lower cost consumer hardware. Therefore the calibration of the rotation axis of the turntable is an important step for the 3D reconstruction. In this paper we propose a novel calibration method for the rotation axis of the turntable. With the proposed rotation axis calibration method, multiple 3D profiles of the target scene can be aligned precisely. In the experiments, three different evaluation approaches are used to evaluate the calibration accuracy of the rotation axis. The experimental results show that the proposed rotation axis calibration method can achieve a high accuracy.

  • Quantum Algorithm on Logistic Regression Problem

    Jun Suk KIM  Chang Wook AHN  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    856-858

    We examine the feasibility of Deutsch-Jozsa Algorithm, a basic quantum algorithm, on a machine learning-based logistic regression problem. Its major property to distinguish the function type with an exponential speedup can help identify the feature unsuitability much more quickly. Although strict conditions and restrictions to abide exist, we reconfirm the quantum superiority in many aspects of modern computing.

  • Lightweight Computation of Overlaid Traffic Flows by Shortest Origin-Destination Trips

    Hiroyuki GOTO  Yohei KAKIMOTO  Yoichi SHIMAKAWA  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E102-A No:1
      Page(s):
    320-323

    Given a network G(V,E), a lightweight method to calculate overlaid origin-destination (O-D) traffic flows on all edges is developed. Each O-D trip shall select the shortest path. While simple implementations for single-source/all-destination and all-pair trips need O(L·n) and O(L·n2) in worst-case time complexity, respectively, our technique is executed with O(m+n) and O(m+n2), where n=|V|, m=|E|, and L represents the maximum arc length. This improvement is achieved by reusing outcomes of priority queue-based algorithms. Using a GIS dataset of a road network in Tokyo, Japan, the effectiveness of our technique is confirmed.

1-20hit(222hit)