The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IN(26286hit)

25561-25580hit(26286hit)

  • Generalized Marching Test for Detecting Pattern Sensitive Faults in RAMs

    Masahiro HASHIMOTO  Eiji FUJIWARA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    809-816

    Since semiconductor memory chip has been growing rapidly in its capacity, memory testing has become a crucial problem in RAMs. This paper proposes a new RAM test algorithm, called generalized marching test (GMT), which detects static and dynamic pattern sensitive faults (PSF) in RAM chips. The memory array with N cells is partitioned into B sets in which every two cells has a cell-distance of at least d. The proposed GMT performs the ordinary marching test in each set and finally detects PSF having cell-distance d. By changing the number of partitions B, the GMT includes the ordinary marching test for B1 and the walking test for BN. This paper demonstrates the practical GMT with B2, capable of detecting PSF, as well as other faults, such as cell stuck-at faults, coupling faults, and decoder faults with a short testing time.

  • Two-Pattern Test Capabilities of Autonomous TGP Circuits

    Kiyoshi FURUYA  Edward J. McCLUSKEY  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    800-808

    A method to analyze two-pattern test capabilities of autonomous test pattern generator (TPG) circuits for use in built-in self-testing are described. The TPG circuits considered here include arbitrary autonomous linear sequential circuits in which outputs are directly fed out from delay elements. Based on the transition matrix of a circuit, it is shown that the number of distinct transitions in a subspace of state variables can be obtained from rank of the submatrix. The two-pattern test capabilities of LFSRs, cellular automata, and their fast parallel implementation are investigated using the transition coverage as a metric. The relationships with dual circuits and reciprocal circuits are also mentioned.

  • SIFLAP-G: A Method of Diagnosing Gate-Level Faults in Combinational Circuits

    Koji YAMAZAKI  Teruhiko YAMADA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    826-831

    We propose a method of diagnosing any logical fault in combinational circuits through a repetition of the single fault-net location procedure with the aid of probing, called SIFLAP-G. The basic idea of the method has been obtained through an observation that a single error generated on a fault-net often propagates to primary outputs under an individual test even though multiple fault-nets exist in the circuit under test. Therefore, candidates for each fault-net are first deduced by the erroneous path tracing under the single fault-net assumption and then the fault-net is found out of those candidates by probing. Probing internal nets is done only for some of the candidates, so that it is possible to greatly decrease the number of nets to be probed. Experimental results show that the number seems nearly proportional to the number of fault-nets (about 35 internal nets per fault-net), but almost independent of the type of faults and the circuit size.

  • Design of Wave-Parallel Computing Architectures and Its Application to Massively Parallel Image Processing

    Yasushi YUMINAKA  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER-Multiple-Valued Architectures and Systems

      Vol:
    E76-C No:7
      Page(s):
    1133-1143

    This paper proposes new architecture LSIs based on wave-parallel computing to provide an essential solution to the interconnection problems in massively parallel processing. The basic concept is ferquency multiplexing of digital information, which enables us to utilize the parallelism of electrical (or optical) waves for parallel processing. This wave-parallel computing concept is capable of performing several independent binary funtions in parallel with a single module. In this paper, we discuss the design of wave-parallel image processing LSI to demonstrate the feasibility of reducing the number of interconnections among modules.

  • A Concurrent Fault Detection Method for Instruction Level Parallel Processors

    Alberto PALACIOS PAWLOVSKY  Makoto HANAWA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    755-762

    This paper describes a new method for the concurrent detection of faults in instruction level parallel (ILP) processors. This method uses the No OPeration (NOP) instruction slots that under branches, resource conflicts and some kind of data dependencies fill some of the pipelines (stages) in an ILP processor. NOPs are replaced by the copy of an effective instruction running in another pipeline. This allows the checking of the pipelines running the original instruction and its copy (ies), by the comparison of the outputs of their stages during the execution of the replicated instruction. We show some figures obtained for the application of this method to a two-pipeline superscalar processor.

  • Wavelength Path Network Management Scheme for Multimedia Photonic Network

    Naoaki YAMANAKA  Shin-ichiro CHAKI  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    731-735

    A wavelength path (WP) network management scheme is proposed for a photonic network. Multimedia data streams are integrated into a single-mode fiber using wave-length division WP multiplexing; both analog/digital and STM/ATM communications are handled. The WP management scheme using WP blocks (WPBs) with guard bands is described. An initially assigned WP does not use the guard band and most bandwidth changes made to accommodate WP changes occur within the original WPB using the guard band. An effective WP assignment method based on a recursive packing scheme is also proposed. The proposed WP packing scheme with guard band realizes a maximum network efficiency of 98%, and the probability of WP reassignment is under 10%. The techniques introduced in this paper permit the realization of flexible and effective multimedia services with a multimedia photonic network.

  • Minimum Test Set for Locally Exhaustive Testing of Multiple Output Combinational Circuits

    Hiroyuki MICHINISHI  Tokumi YOKOHIRA  Takuji OKAMOTO  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    791-799

    The locally exhaustive testing of multiple output combinational circuits is the test which provides exhaustive test patterns for each set of inputs on which each output depends. First, this paper presents a sufficient condition under which a minimum test set (MLTS) for the locally exhaustive testing has 2w test patterns, where w is the maximum number of inputs on which any output depends. Next, we clarify that any CUT with up to four outputs satisfies the condition, independently of w and n, where n is the number of inputs of the CUT. Finally, we clarify that any CUT with five outputs also satisfies the condition for 1w2 or n2wn.

  • Numerical Verification of Algebraic Non-integrability for High Dimensional Dynamical Systems

    Hisa-Aki TANAKA  Shin'ichi OISHI  Atsushi OKADA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1117-1120

    The singular point analysis, such as the Painlev test and Yoshida's test, is a computational method and has been implemented in a symbolic computational manner. But, in applying the singular point analysis to high dimensional and/or "complex" dynamical systems, we face with some computational difficulties. To cope with these difficulties, we propose a new numerical technique of the singular point analysis with the aid of the self-validating numerics. Using this technique, the singular point analysis can now be applicable to a wide class of high dimensional and/or "complex" dynamical systems, and in many cases dynamical properties such as the algebraic non-integrability can be proven for such systems.

  • An Estimation of Pressure and Flow in a Three-Dimensional Dynamic Model of the Larynx with Nonuniform Glottis by FVM

    Chengxiang LU  Takayoshi NAKAI  Hisayoshi SUZUKI  

     
    PAPER-Modeling and Simulation

      Vol:
    E76-A No:7
      Page(s):
    1252-1262

    In order to describe the flow passing through the glottis, we constructed a dynamic three-dimensional finite element model of the human larynx. The transient flow fields in the laryngeal model were calculated to examine the dynamic effects generated by the vocal fold vibration. A phase difference between the upper and lower edges of the vocal folds was included in the model to investigate the effect of the glottal shapes on pressure-flow relationships in the larynx during the vocal fold vibration. Using STAR-CD thermofluids analysis system, which is capable of treating the transient flow in moving-boundary situations with finite volume method, we solved the viscous incompressible Navier-Stokes equations to investigate the glottal flows and transglottal pressures as a function of the vocal fold vibration. The results were compared to the uniform glottis model and the theoretical model proposed by Ishizaka and Matsudaira, respectively. The effects of dynamic factors on the pressure distributions and flow patterns in the larynx resulting from the vocal-fold vibration were also discussed.

  • An Efficient Fault Simulation Method for Reconvergent Fan-Out Stem

    Sang Seol LEE  Kyu Ho PARK  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    771-775

    In this paper, we present an efficient method for the fault simulation of the reconvergent fan-out stem. Our method minimizes the fault propagating region by analyzing the topology of the circuit, whose region is smaller than that of Tulip's. The efficiency of our method is illustrated by experimental results for a set of benchmark circuits.

  • FDTD Method Analysis of Mutual Coupling between Microstrip Antennas

    Kazuhiro UEHARA  Kenichi KAGOSHIMA  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    762-764

    We analyze the mutual coupling between two microstrip antennas (MSAs) with the finite-difference time-domain (FDTD) method. It is suitable for substrates which have a complex configuration or include feed line structures. The mutual coupling between two MSAs on discontinuous orthogonal substrates is successfully calculated.

  • Efficient Methods for Guided-Probe Diagnosis

    WEN Xiaoqing  Noriyoshi ITAZAKI  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    817-825

    To speed up a guided-probe diagnosis process, the number of probed lines needs to be reduced. This paper presents two efficient probing line determination methods by which the number of probed lines is either small or minimum. The concept of fault probability is introduced to reflect the fact that not all gates have the same probability to be faulty. Experimental results show the effectiveness of the proposed methods.

  • Controlling Chaos in the Maxwell-Bloch Equations with Time Delay

    Keiji KONISHI  Yoshiaki SHIRAO  Hiroaki KAWABATA  Toshikuni NAGAHARA  Yoshio INAGAKI  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1121-1125

    A laser system which has a mirror outside of it to feedback a delayed output has been described by the Maxwell-Bloch equations with time delay. It is shown that a chaotic behavior in the equations can be controlled by using a OPF control algorithm. Our numerical simulation indicates that the chaotic behavior is stabilized on 1, 2 periodic unstable orbits.

  • Discrete-Track Magnetic Disk Using Embossed Substrate

    Takehisa ISHIDA  Osamu MORITA  Makoto NODA  Satoru SEKO  Shoji TANAKA  Hideaki ISHIOKA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1161-1163

    Embossed disks with discrete magnetic tracks and servo marks are proposed and evaluated. The tracks and the servo marks are made by etching the glass substrate. The guard band depth was decided to be 0.2 µm. Using the disks, the head positioning accuracy of 0.09µm (rms) and the recording density of 192 tracks per millimeter were demonstrated.

  • Multiple-Valued Programmable Logic Array Based on a Resonant-Tunneling Diode Model

    Takahiro HANYU  Yoshikazu YABE  Michitaka KAMEYAMA  

     
    PAPER-Multiple-Valued Architectures and Systems

      Vol:
    E76-C No:7
      Page(s):
    1126-1132

    Toward the age of ultra-high-density digital ULSI systems, the development of new integrated circuits suitable for an ultimately fine geometry feature size will be an important issue. Resonant-tunneling (RT) diodes and transistors based on quantum effects in deep submicron geometry are such kinds of key devices in the next-generation ULSI systems. From this point of view, there has been considerable interests in RT diodes and transistors as functional devices for circuit applications. Especially, it has been recognized that RT functional devices with multiple peaks in the current-voltage (I-V) characteristic are inherently suitable for implementing multiple-valued circuits such as a multiple-state memory cell. However, very few types of the other multiple-valued logic circuits have been reported so far using RT devices. In this paper, a new multiple-valued programmable logic array (MVPLA) based on RT devices is proposed for the next-generation ULSI-oriented hardware implementation. The proposed MVPLA consists of 3 basic building blocks: a universal literal circuit, an AND circuit and a linear summation circuit. The universal literal circuit can be directly designed by the combination of the RT diodes with one peak in the I-V characteristic, which is programmable by adjusting the width of quantum well in each RT device. The other basic building blocks can be also designed easily using the wired logic or current-mode wired summation. As a result, a highdensity RT-diode-based MVPLA superior to the corresponding binary implementation can be realized. The device-model-based design method proposed in this paper is discussed using static characteristics of typical RT diode models.

  • A 12-bit Resolution 200 kFLIPS Fuzzy Inference Processor

    Kazuo NAKAMURA  Narumi SAKASHITA  Yasuhiko NITTA  Kenichi SHIMOMURA  Takeshi TOKUDA  

     
    PAPER-Fuzzy Logic System

      Vol:
    E76-C No:7
      Page(s):
    1102-1111

    A fuzzy inference processor which performs fuzzy inference with 12-bit resolution input at 200 kFLIPS (Fuzzy Logical Inference Per Second) has been developed. To keep the cost performance, not parallel processing hardware but processor type hardware is employed. Dedicated membership function generators, rule instructions and modified add/divide algorithm are adopted to attain the performance. The membership function generators calculate a membership function value in less than a half clock cycle. Rule instructions calculate the grade of a rule by one instruction. Antecedent processing and consequent processing are pipelined by the modified add/divide algorithm. As a result, total inference time is significantly reduced. For example, in the case of typical inference (about 20 rules with 2 to 4 inputs and 1 output), the total inference needs approximately 100 clock cycles. Furthermore by adding a mechanism to calculate the variance and maximum grade of the final membership function, it is enabled to evaluate the inference reliability. The chip, fabricated by 1 µm CMOS technology, contains 86k transistors in a 7.56.7 mm die size. The chip operates at more than 20 MHz clock frequency at 5 V.

  • Scale Factor of Resolution Conversion Based on Orthogonal Transforms

    Shogo MURAMATSU  Hitoshi KIYA  Masahiko SAGAWA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1150-1153

    It is known that the resolution conversion based on orthogonal transform has a problem that is difference of luminance between the converted image and the original. In this paper, the scale factor of the system employing various orthogonal transforms is generally formulated by considering the DC gain, and the condition of alias free for DC component is indicated. If the condition is satisfied, then the scale factor is determined by only the basis functions.

  • Constant Round Perfect ZKIP of Computational Ability

    Toshiya ITOH  Kouichi SAKURAI  

     
    PAPER-Information Security and Cryptography

      Vol:
    E76-A No:7
      Page(s):
    1225-1233

    In this paper, we show that without any unproven assumption, there exists a "four" move blackbox simulation perfect zero-knowledge interactive proof system of computational ability for any random self-reducible relation R whose domain is in BPP, and that without any unproven assumption, there exists a "four" move blackbox simulation perfect zero-knowledge interactive proof system of knowledge on the prime factorization. These results are optimal in the light of the round complexity, because it is shown that if a relation R has a three move blackbox simulation (perfect) zero-knowledge interactive proof system of computational ability (or of knowledge), then there exists a probabilistic polynomial time algorithm that on input x ∈ {0, 1}*, outputs y such that (x, y)∈R with overwhelming probability if x ∈dom R, and outputs "⊥" with probability 1 if x dom R.

  • A Copy-Learning Model for Recognizing Patterns Rotated at Various Angles

    Kenichi SUZAKI  Shinji ARAYA  Ryozo NAKAMURA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1207-1211

    In this paper we discuss a neural network model that can recognize patterns rotated at various angles. The model employs copy learning, a learning method entirely different from those used in conventional models. Copy-Learning is an effective learning method to attain the desired objective in a short period of time by making a copy of the result of basic learning through the application of certain rules. Our model using this method is capable of recognizing patterns rotated at various angles without requiring mathematical preprocessing. It involves two processes: first, it learns only the standard patterns by using part of the network. Then, it copies the result of the learning to the unused part of the network and thereby recognizes unknown input patterns by using all parts of the network. The model has merits over the conventional models in that it substantially reduces the time required for learning and recognition and can also recognize the rotation angle of the input pattern.

  • Multiple-Valued Code Assignment Algorithm for VLSI-Oriented Highly Parallel k-Ary Operation Circuits

    Saneaki TAMAKI  Michitaka KAMEYAMA  

     
    PAPER-Multiple-Valued Architectures and Systems

      Vol:
    E76-C No:7
      Page(s):
    1112-1118

    Design of high-speed digital circuits such as adders and multipliers is one of the most important issues to implement high performance VLSI systems. This paper proposes a new multiple-valued code assignment algorithm to implement locally computable combinational circuits for k-ary operations. By the decomposition of a given k-ary operation into unary operations, a code assignment algorithm for k-ary operations is developed. Partition theory usually used in the design of sequential circuits is effectively employed for optimal code assignment. Some examples are shown to demonstrate the usefulness of the proposed algorithm.

25561-25580hit(26286hit)