1-20hit |
A new theorem is proposed on BIBO (Bounded Input Bounded Output) stability of a general feedback amplifier circuit formulated by BIBO operators. The proposed theorem holds for both linear and nonlinear BIBO operators. The meaning of this theorem is clarified by applying it to continuous-time linear cases.
Optical interfaces have been recently standardized as the main physical layer interfaces for most short length optical communication systems, such as IEEE802.3ae, OIF-VSR, and the Fiber Channel. As interface speed increases, the requirements for forecasting the optical characteristics of direct modulated laser diodes (LDs) also increase because those standards define the specifications for physical layers with optical domains. In this paper, a vertical-cavity surface-emitting laser (VCSEL) equivalent electronic circuit model is described with which designers can simulate the $I-L-V$, S-parameter, and transient characteristics of LDs on a circuit simulator by improving convergence. We show that the proposed VCSEL model can model an 850-nm bandwidth VCSEL with 10-Gbps operation.
A new theoretical formulation based on BIBO (Bounded Input Bounded Output) operators is proposed for a general feedback amplifier circuit. Several fundamental theorems are derived in this letter. The main theorem provides a basis for a realization of an inverse of a feedback-branch linear or nonlinear BIBO operator satisfying the associative law.
Takao OURA Teru YONEYAMA Shashidhar TANTRY Hideki ASAI
In this report, we propose a new bilateral floating resistor circuit having both positive and negative resistance values. The equivalent resistance of this floating resistor in CMOS technology can be changed by using controlled-voltages, which is an advantage over polysilicon or diffused resistor in the integrated circuit. Moreover the characteristics of the proposed circuit are independent of the threshold voltage. We have simulated the proposed circuit by using HSPICE. Finally, we have confirmed that the proposed circuit is useful as an analog component.
Teru YONEYAMA Hiroshi NINOMIYA Hideki ASAI
In this report, a design method of neural networks for limit cycle generator is described. First, the constraint conditions for the synaptic weights, which are given by the linear inequalities, are derived from the dynamics of neural networks. Next, the linear inequalities are solved by the linear programming method. The synaptic weights and other parameters are determined by the above solutions. Furthermore, neuro-based limit cycle generator is designed with analog electronic circuits and simulated by Spice. Finally, we confirm that our design method is efficient and practical for the design of neuro-based limit cycle generator.
Masaharu KIRIHARA Kenji TANIGUCHI
The basic operation characteristics of an asymmetric turnstile which transfers each electron one by one in one direction is described. A novel single electron counter circuit consisting of the asymmetric turnstiles, a load capacitor and an inverter which counts the number of high inputs is proposed. Monte Carlo circuit simulations reveal that the gate clock time of the counter circuit should be long enough to achieve allowable minimum error rate. The counter circuit implementing asymmetric single electron turnstiles is demonstrated to be applicable to a noise reduction system, a Winner-Take-All circuit and an artificial neuron circuit.
Yoshito OHUCHI Takahiro INOUE Hiroaki FUJINO
In this paper, a new switched-current auto-tuning filter is proposed. Switched-current (SI) is a current-mode analog sampled-data circuit technique. An SI circuit can be realized using only standard digital CMOS technologies, and is capable of realizing high frequency circuits. The proposed filter is composed of SI-OTA (operational transconductance amplifier) integrators. The gain of an SI-OTA integrator can be electronically controlled by the bias current. The proposed filter is a current controlled filter (CCF) and a PLL technique was used as its tuning method. A 2nd-order SI auto-tuning low-pass filter with 100kHz cutoff frequency was designed assuming a 2µm CMOS process. The characteristics of this SI filter and its tuning characteristics were confirmed by SPICE simulations.
Junichi GOTO Masakazu YAMASHINA Toshiaki INOUE Benjamin S. SHIH Youichi KOSEKI Tadahiko HORIUCHI Nobuhisa HAMATAKE Kouichi KUMAGAI Tadayoshi ENOMOTO Hachiro YAMADA
A programmable clock generator, based on a phase-locked loop (PLL) circuit, has been developed with 0.5 µm CMOS triple-layer Al interconnection technology for use as an on-chip clock generator in a 300-MHz video signal processor. The PLL-based clock generator generates a clock signal whose frequency ranges from 50 to 350 MHz which is an integral multiple, from 2 to 16, of an external clock frequency. In order to achieve stable operation within this wide range, a voltage controlled oscillator (VCO) with selectable low VCO gain characteristics has been developed. Experimental results show that the clock generator generates a 297-MHz clock with a 27-MHz external clock, with jitter of 180 ps and power dissipation of 120 mW at 3.3-V power supply, and it can also oscillate up to 348 MHz with a 31.7-MHz external clock.
Masao MIZUKAMI Yoichi SATOH Takahiko KOZAKI Yasuo MIKAMI
This paper describes CMOS embedded RAMs we developed utilizing 1.3 µm and 0.8 µm process technologies. Our goal was to achieve high-performance switching for digital communication systems. Because such switching can best be obtained by using high-performance embedded RAMs, we used 0.8 µm process technology and developed a 4 kW9 b single-port embedded RAM with 5 ns access time and 100 mW power dissipation during32 MHz operation, and a 1 kW9 b dual-port embedded RAM with 3.7 ns access time and 100 mW power dissipation during 40 MHz operation. We implemented these RAMs on one chip in developing three time-switch VLSIs, one buffer memory VLSI for ATM switches, and two cross-connect switch VLSIs.
Youji KANIE Yasushi KUBOTA Shinji TOYOYAMA Yasuaki IWASE Shuhei TSUCHIMOTO
This report describes 4-2 compressors composed of Complementary Pass-Transistor Logic (CPL). We will show that circuit designs of the 4-2 compressors can be optimized for high speed and small size using only exclusive-OR's and multiplexers. According to a circuit simulation with 0.8µm CMOS device parameters, the maximum propagation delay and the average power consumption per unit adder are 1.32 ns and 11.6 pJ, respectively.
Zsolt Miklós KOVÁCS-VAJNA Arrigo BENEDETTI Sergio GRAFFI Guido MASETTI
The increasing size and complexity of integrated circuits has lead to the development of advanced algorithms and techniques for circuit simulation. The majority of circuit simulators rely on the Newton-Raphson algorithm for the solution of nonlinear equations that arise from the circuit description. Unfortunately, a good estimate of the root to be found is needed for the algorithm to converge. The convergence rate of the algorithm is quadratic once the method gets "close enough" to the solution, but before reaching this point the method may follow a complex route through unrealistic values of the circuit variables, leading eventually to divergence. Simulations performed with SPICE on several test circuits reveal that during the first iterations of the Newton-Raphson algorithm internal node voltages exceed the power supply voltage of several orders of magnitudes even for simple circuits. A new simulation program called MUSIC (Multilevel Simulator for Integrated Circuits) has been developed to overcome these drawbacks. In MUSIC the circuit to be simulated is decomposed in subcircuits, which may contain instances of other subcircuits up to any nesting level. Subcircuits are then simulated independently with a multilevel Newton algorithm permitting to reduce both the large oscillations that circuit variables undergo during the simulation process and the number of iterations necessary for the circuit to converge. The novel feature of this multilevel algorithm is the propagation of the already calculated terminal voltages, which become known after a subcircuit has converged, to the subcircuits connected to same terminals. In this way the information regarding node voltages is propagated through the network without constraining conditions that do not have physical counterpart. Simulations performed on chains of inverters and a 4-bit full adder evidence how MUSIC is able to improve the convergence rate and to reduce the intermediate voltage spikes.
Two types of novel nVT level shift circuits based on the square law characteristics of MOSFETs have been proposed. These circuits generate VIN+nVT or VIN-nVT (where VT is a threshold voltage), if the input voltage is applied as the VIN. These circuits can be widely used in MOSFET characterization, compensating VT effect, VT measurement, level shifting, etc. Type 1 is directly derived from the nVT-sift circuit proposed by Wang. Type 2 can reduce a total chip area than type 1 and has a wider input range. SPICE simulations show that the proposed circuits have a very wide input range and a small power consumption.
Kenji TOYOTA Akira HYOGO Keitaro SEKINE
OTA (Operational Transconductance Amplifier) is a useful circuit in analog signal processing systems, especially in high-frequency applications. Important features of OTA are: infinite input impedance, electrically changeable transconductance (Gm), and much wider operation range without negative feedback such as in OPamp applications. The good linearity of OTA over wide input range is necessary to extend the application fields of OTA. Several techniques are developed to extend the input range with good linearity. In this paper, a highly-linear CMOS-OTA operating under 1 V power supply, is proposed. The concept of the proposed OTA is based on class-AB operation of two n-channel MOSFETs in the saturation region. By improving the input stage circuits, wide input range can be achieved. SPICE simulations are performed to verify the performance of the proposed OTA.
New insights pertaining to hot-carrier degradation of CMOS inverters have been obtained using an in-house reliability simulator named HIRES (Hitachi Reliability Simulator). The simulation of three out of four different inverter configurations which utilize series-connected NMOSFET devices between the output node and ground results in higher levels if degradation than that induced by intuition. For two of the configurations--the cascode inverter (where the gate of all NMOSFET's are connected to the input) and the two-input NAND gate--degradation levels are comparable to that of a simple two-transistor CMOS inverter. This high level of degradation is found to be caused by the fact that most of the output voltage is dropped across one of the series-connected NMOSFET transistors rather than being equally divided between the two. From degradation simulation results, a design methodology is developed to optimize the inverter circuits to minimize hot-carrier degradation by balancing the degradation suffered between the two series-connected NMOSFET's. Using this approach, up to a factor of 109 improvement in device lifetime is achieved.
Yoshihiro FUJITA Nobuyuki YAMASHITA Shin'ichiro OKAZAKI
This paper describes the architecture and simulated performance of a proposed Integrated Memory Array Processor (IMAP). The IMAP is an LSI which integrates a large capacity memory and a one dimensional SIMD processor array on a single chip. The IMAP holds, in its on-chip memory, data which at the same time can be processed using a one dimensional SIMD processor integrated on the same chip. All processors can access their individual parts of memory columns at the same time. Thus, it has very high processor-memory data transfer bandwidth, and has no memory access bottleneck. Data stored in the memory can be accessed from outside of the IMAP via a conventional memory interface same as a VRAM. Since the SIMD processors on the IMAP are configured in a one dimensional array, multiple IMAPs could easily be connected in series to create a larger processor and memory configuration. To estimate the performance of such an IMAP, a system architecture and instruction set were first defined, and on the basis of those two, a simulator and an assembly language were then developed. In this paper, simulation results are presented which indicate the performance of an IMAP in both image processing and artificial neural network calculations.
Nobuo NAGANO Tetsuyuki SUZAKI Masaaki SODA Kensuke KASAHARA Kazuhiko HONJO
AlGaAs/GaAs HBT ICs for high bit-rate optical transmission systems, such as preamplifier, D-F/F, differential amplifier, and laser driver, have been newly developed using the hetero guard-ring fully self-aligned HBT (HGFST) fabrication process. In this process, the emitter mesa is ECR-RIBE dry etched using a thick emitter-metal system of WSi and Ti-Pt-Au as etching mask, and a hetero guard-ring composed of a depleted AlGaAs layer is fabricated on p GaAs extrinsic base regions. This process results in highly uniform HBT characteristics. The preamplifier IC exhibits a DC to 18.5-GHz transimpedance bandwidth with a transimpedance gain of 49 dBΩ. The rise time and fall time for the D-F/F IC are 30 and 23 ps, respectively. The laser driver IC has a 40-mAp-p output current swing. The differential amplifier exhibits a DC to 12.1-GHz bandwidth with a 14.2-dB power gain.
Takahiro INOUE Oinyun PAN Fumio UENO Yoshito OHUCHI
Switched-current (SI) is a current-mode analog sampled-data signal processing technique realizable in standard digital CMOS technologies. In this paper, new switched-current (SI) mirrors using OTAs (operational transconductance amplifiers) are proposed. These circuits are less sensitive to clock-feedthrough noise than conventional SI mirrors by virtue of linear I-V/V-I transformations. In addition, the current gain of the proposed mirror is electronically tunable. Not only inverting mirrors but also noninverting mirrors can be realized by this method.
R. NANDI S. K. SANYAL D. LAHIRI D. PAL
Some new circuit configurations for dual-input integrators and differentiators are proposed. The use of a multiplier device around the Operational Amplifier (OA) yields electronic tunability of their time-constant (To) by a Control Voltage (Vx). Experimental results in support of theoretical design and analysis are included.
Mikio KOYAMA Hiroshi TANIMOTO Satoshi MIZOGUCHI
This paper describes design considerations for high frequency active BPFs up to 100 MHz. The major design issues for high frequency active filters are the excess phase shift in the integrators and high power consumption of the integrators. Typical bipolar transistor based transconductors such as the Gilbert gain cell and the linearized transconductor with two asymmetric emitter-coupled pairs have been analyzed and compared. It has been clarified that the power consumption of the linearized transconductor can be much smaller than that of the Gilbert gain cell because of its high transconductance to working current ratio while maintaining a signal to noise ratio of the same order. A simple high-speed fully differential linearized transconductor cell is proposed with emitter follower buffers and resistive loads for excess phase compensation. A novel gyrator based transformation for the LC ladder BPF has been introduced. This transformation has resulted in a structure with simple capacitor-coupled active resonators which exactly preserves the original transfer function. A fourth order 10.7 MHz BPF IC was designed using the proposed transconductors. It was fabricated and has demonstrated the usefulness of the proposed approach. In addition, an experimental 100 MHz second order BPF IC with Q=14 has been successfully implemented indicating the potential of the proposed approach.
Noriyuki HIRAKATA Mitsuaki FUJIHIRA Akihiro NAKAMURA Tomihiro SUZUKI
High frequency and low power 128/129 dual modulus prescaler ICs are developed for mobile communication applications, using 0.5 µm GaAs MESFET technology. Provided with an on-chip voltage regulator, a prescaler IC with an input amplifier operates in a wide frequency range from 200 MHz to 1,500 MHz at input power from -15 dBm to +17 dBm at the temperature of -30 to +120 with supply voltage of 2.7 V, 3.0 V and 5.0 V. At the same time, it demonstrated its low power characteristics consuming 3.68 mA with 3.0 V at +30 in operation, 0.16 mA while powered-off. Another prescaler IC without an input amplifier operates up to 1,650 MHz with Vdd=2.7 V, 3.0 V and 5.0 V at +30, dissipating 2.74 mA/3.0 V.