The search functionality is under construction.

Keyword Search Result

[Keyword] multiplier(149hit)

41-60hit(149hit)

  • A Unified Forward/Inverse Transform Architecture for Multi-Standard Video Codec Design

    Sha SHEN  Weiwei SHEN  Yibo FAN  Xiaoyang ZENG  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:7
      Page(s):
    1534-1542

    This paper describes a unified VLSI architecture which can be applied to various types of transforms used in MPEG-2/4, H.264, VC-1, AVS and the emerging new video coding standard named HEVC (High Efficiency Video Coding). A novel design named configurable butterfly array (CBA) is also proposed to support both the forward transform and the inverse transform in this unified architecture. Hadamard transform or 4/8-point DCT/IDCT are used in traditional video coding standards while 16/32-point DCT/IDCT are newly introduced in HEVC. The proposed architecture can support all these transform types in a unified architecture. Two levels (architecture level and block level) of hardware sharing are adopted in this design. In the architecture level, the forward transform can share the hardware resource with the inverse transform. In the block level, the hardware for smaller size transform can be recursively reused by larger size transform. The multiplications of 4 or 8-point transform are implemented with Multiplierless MCM (Multiple Constant Multiplication). In order to reduce the hardware overhead, the multiplications of 16/32 point DCT are implemented with ICM (input-muxed constant multipliers) instead of MCM or regular multipliers. The proposed design is 51% more area efficient than previous work. To the author's knowledge, this is the first published work to support both forward and inverse 4/8/16/32-point integer transform for HEVC standard in a unified architecture.

  • Energy Harvesting Technique by Using Novel Voltage Multiplier Circuits and Passive Devices

    Hamid JABBAR  Sungju LEE  Kyeon HUR  Taikyeong JEONG  

     
    BRIEF PAPER

      Vol:
    E96-C No:5
      Page(s):
    726-729

    For a development of energy harvesting system, the fact of radio waves and ambient RF (Radio Frequency) sources, including passive devices along with novel circuits, are very closely related to mobile charging devices and energy storage system. The use of schottky diode and voltage multiplier circuits to express on the ambient RF sources surrounding the system is one way that has seen a sudden rise in use for energy harvesting. Practically speaking, the RF and ambient sources can be provided by active and passive devices such as inductors, capacitors, diode, etc. In this paper, we present a schottky based voltage multiplier circuits for mobile charging device which integrate the power generation module with radio wave generation module. We also discuss that multi-stage schematic, e.g., three-stage schottky diode based voltage multiplier circuits, for a continuing effort on energy harvesting system.

  • Fast Bit-Parallel Polynomial Basis Multiplier for GF(2m) Defined by Pentanomials Using Weakly Dual Basis

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E96-A No:1
      Page(s):
    322-331

    In this paper, we derive a fast polynomial basis multiplier for GF(2m) defined by pentanomials xm+xk3+xk2+xk1+1 with 1 ≤ k1 < k2 < k3 ≤ m/2 using the presented method by Park and Chang. The proposed multiplier has the time delay TA+(2+⌈log2(m-1)⌉) TX or TA+(3+⌈log2(m-1)⌉) TX which is the lowest one compared with known multipliers for pentanomials except for special types, where TA and TX denote the delays of one AND gate and one XOR gate, respectively. On the other hand, its space complexity is very slightly greater than the best known results.

  • Image Recovery by Decomposition with Component-Wise Regularization

    Shunsuke ONO  Takamichi MIYATA  Isao YAMADA  Katsunori YAMAOKA  

     
    PAPER-Image

      Vol:
    E95-A No:12
      Page(s):
    2470-2478

    Solving image recovery problems requires the use of some efficient regularizations based on a priori information with respect to the unknown original image. Naturally, we can assume that an image is modeled as the sum of smooth, edge, and texture components. To obtain a high quality recovered image, appropriate regularizations for each individual component are required. In this paper, we propose a novel image recovery technique which performs decomposition and recovery simultaneously. We formulate image recovery as a nonsmooth convex optimization problem and design an iterative scheme based on the alternating direction method of multipliers (ADMM) for approximating its global minimizer efficiently. Experimental results reveal that the proposed image recovery technique outperforms a state-of-the-art method.

  • A Ring-VCO-Based Injection-Locked Frequency Multiplier with Novel Pulse Generation Technique in 65 nm CMOS

    Sangyeop LEE  Norifumi KANEMARU  Sho IKEDA  Tatsuya KAMIMURA  Satoru TANOI  Hiroyuki ITO  Noboru ISHIHARA  Kazuya MASU  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1589-1597

    This paper proposes a low-phase-noise ring-VCO-based frequency multiplier with a new subharmonic direct injection locking technique that only uses a time-delay cell and four MOS transistors. Since the proposed technique behaves as an exclusive OR and can double the reference signal frequency, it increases phase correction points and achieves low phase noise characteristic across the wide output frequency range. The frequency multiplier was fabricated by using 65 nm Si CMOS process. Measured 1-MHz-offset phase noise at 6.34 GHz with reference signals of 528 MHz was -119 dBc/Hz.

  • DC and High-Frequency Characteristics of GaN Schottky Varactors for Frequency Multiplication

    Chong JIN  Dimitris PAVLIDIS  Laurence CONSIDINE  

     
    PAPER-GaN-based Devices

      Vol:
    E95-C No:8
      Page(s):
    1348-1353

    The design, fabrication and characterization of GaN based varactor diodes are presented. MOCVD was used for layer growth and the DC characteristic of 4 µm diameter diodes showed a turn-on voltage of 0.5 V, a breakdown voltage of 21 V and a modulation ratio of 1.63. High frequency characterization allowed obtaining the diode equivalent circuit and observed the bias dependence of the series resistance. The diode cutoff frequency was 900 GHz. A large-signal model was developed for the diode and the device power performance was evaluated. A power of 7.2 dBm with an efficiency of 16.6% was predicted for 47 GHz to 94 GHz doubling.

  • Efficient LUT-Based Truncated Multiplier and Its Application in RGB to YCbCr Color Space Conversion

    Van-Phuc HOANG  Cong-Kha PHAM  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:6
      Page(s):
    999-1006

    High performance, low area multipliers are highly desired for modern and future DSP systems due to the increasing demand of high speed DSP applications. In this paper, we present an efficient architecture for an LUT-based truncated multiplier and its application in RGB to YCbCr color space conversion which can be used for digital TV, image and video processing systems. By employing an improved split LUT-based architecture and LUT optimization method, the proposed multiplier can reduce the value of area-delay product by up to 52% compared with other constant multiplier methods. The FPGA implementation of a color space conversion application employing the proposed multiplier also results in significant reduction of area-delay product of up to 48%.

  • CMOS Differential Circuits Using Charge-Redistribution and Reduced-Swing Schemes

    Hong-Yi HUANG  Shiun-Dian JAN  Yang CHOU  Cheng-Yu CHEN  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:2
      Page(s):
    275-283

    The charge-redistribution low-swing differential logic (CLDL) circuits are presented in this work. It can implement a complex function in a single gate. The CLDL circuits utilizes the charge-redistribution and reduced-swing schemes to reduce the power dissipation and enhance the operation speed. In addition, a pipeline structure is formed by a series connection structure controlled by a true-single-phase clock, thereby achieving high-speed operation. The CLDL circuits perform more than 25% speedup and 31% in power-delay product compared to other differential circuits with true-single-phase clock. A pipelined multiplier-accumulator (MAC) using CLDL structure is fabricated in 0.35 µm single-poly four-metal CMOS process. The test chip is successfully verified to operate at 900-MHz.

  • Low-Complexity Constant Multiplication Based on Trigonometric Identities with Applications to FFTs

    Fahad QURESHI  Oscar GUSTAFSSON  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:11
      Page(s):
    2361-2368

    In this work we consider optimized twiddle factor multipliers based on shift-and-add-multiplication. We propose a low-complexity structure for twiddle factors with a resolution of 32 points. Furthermore, we propose a slightly modified version of a previously reported multiplier for a resolution of 16 points with lower round-off noise. For completeness we also include results on optimal coefficients for eight-points resolution. We perform finite word length analysis for both coefficients and round-off errors and derive optimized coefficients with minimum complexity for varying requirements.

  • Well-Structured Modified Booth Multiplier and Its Application to Reconfigurable MAC Design

    Li-Rong WANG  Ming-Hsien TU  Shyh-Jye JOU  Chung-Len LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:6
      Page(s):
    1112-1119

    This paper presents a well-structured modified Booth encoding (MBE) multiplier which is applied in the design of a reconfigurable multiply-accumulator (MAC) core. The multiplier adopts an improved Booth encoder and selector to achieve an extra-row-removal and uses a hybrid approach in the two's complementation circuit to reduce the area and improve the speed. The multiplier is used to form a 32-bit reconfigurable MAC core which can be flexibly configured to execute one 3232, two 1616 or four 88 signed multiply-accumulation. Experimentally, when implemented with a 130 nm CMOS single-Vt standard cell library, the multiplier achieved a 15.8% area saving and 11.7% power saving over the classical design, and the reconfigurable MAC achieved a 4.2% area and a 7.4% power saving over the MAC design published so far if implemented with a mixed-Vt standard cell library.

  • A New DA Implementation Technique for Digital Filters Using Radix-16 Modified Booth Algorithm

    Ji-Hye SHIN  Young-Beom JANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:4
      Page(s):
    1136-1139

    In this paper, a new DA (Distributed Arithmetic) filter implementation technique is presented. Contrary to the conventional DA technique using ROM, the proposed implementation technique avoids the use of ROM since it does not need the combinations of filter coefficients. Furthermore, by using the Radix-16 modified Booth algorithm, implementation complexity of the proposed structure can be reduced. Through the HDL coding and synthesis, it was shown that 41.6% of implementation area can be reduced.

  • An Energy Efficiency 4-bit Multiplier with Two-Phase Non-overlap Clock Driven Charge Recovery Logic

    Yimeng ZHANG  Leona OKAMURA  Tsutomu YOSHIHARA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    605-612

    A novel charge-recovery logic structure called Pulse Boost Logic (PBL) is proposed in this paper. PBL is a high-speed low-energy-dissipation charge-recovery logic with dual-rail evaluation tree structure. It is driven by 2-phase non-overlap clock, and requires no DC power supply. PBL belongs to boost logic family, which includes boost logic, enhanced boost logic and subthreshold boost logic. In this paper, PBL has been compared with other charge-recovery logic technologies. To demonstrate the performance of PBL structure, a 4-bit pipeline multiplier is designed and fabricated with 0.18 µm CMOS process technology. The simulation results indicate that the 4-bit multiplier can work at a frequency of 1.8 GHz, while the measurement of test chip is at operation frequency of 161 MHz, and the power dissipation at 161 MHz is 772 µW.

  • High Throughput Parallel Arithmetic Circuits for Fast Fourier Transform

    Ryosuke NAKAMOTO  Sakae SAKURABA  Alexandre MARTINS  Takeshi ONOMI  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E94-C No:3
      Page(s):
    280-287

    We have designed and implemented a 4-bit Carry Look-ahead Adder (CLA) and 4-bit parallel multipliers to be used for the Fast Fourier Transform (FFT) system with the estimated clock frequency of 20 GHz. Through some high frequency functional tests, we have confirmed that the operation of the CLA has been successful. Through some low speed tests, we have also confirmed that the operation of multiplication has been successful. In addition, we have designed a 4-bit multiplier with a Booth encoder and with a 2-point-4-bit butterfly circuit.

  • Binary Sequence Pairs with Two-Level Correlation and Cyclic Difference Pairs

    Seok-Yong JIN  Hong-Yeop SONG  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2266-2271

    We investigate binary sequence pairs with two-level correlation in terms of their corresponding cyclic difference pairs (CDPs). We define multipliers of a cyclic difference pair and present an existence theorem for multipliers, which could be applied to check the existence/nonexistence of certain hypothetical cyclic difference pairs. Then, we focus on the ideal case where all the out-of-phase correlation coefficients are zero. It is known that such an ideal binary sequence pair exists for length υ = 4u for every u ≥ 1. Using the techniques developed here on the theory of multipliers of a CDP and some exhaustive search, we are able to determine that, for lengths υ ≤ 30, (1) there does not exist "any other" ideal/ binary sequence pair and (2) every example in this range is equivalent to the one of length υ = 4u above. We conjecture that if there is a binary sequence pair with an ideal two-level correlation then its in-phase correlation must be 4. This implies so called the circulant Hadamard matrix conjecture.

  • A C-Testable 4-2 Adder Tree for an Easily Testable High-Speed Multiplier

    Nobutaka KITO  Kensuke HANAI  Naofumi TAKAGI  

     
    PAPER-Information Network

      Vol:
    E93-D No:10
      Page(s):
    2783-2791

    A C-testable 4-2 adder tree for an easily testable high-speed multiplier is proposed, and a recursive method for test generation is shown. By using the specific patterns that we call 'alternately inverted patterns,' the adder tree, as well as partial product generators, can be tested with 14 patterns regardless of its operand size under the cell fault model. The test patterns are easily fed through the partial product generators. The hardware overhead of the 4-2 adder tree with partial product generators for a 64-bit multiplier is about 15%. By using a previously proposed easily testable adder as the final adder, we can obtain an easily testable high-speed multiplier.

  • InP-Based Unipolar Heterostructure Diode for Vertical Integration, Level Shifting, and Small Signal Rectification

    Werner PROST  Dudu ZHANG  Benjamin MUNSTERMANN  Tobias FELDENGUT  Ralf GEITMANN  Artur POLOCZEK  Franz-Josef TEGUDE  

     
    PAPER-III-V Heterostructure Devices

      Vol:
    E93-C No:8
      Page(s):
    1309-1314

    A unipolar n-n heterostrucuture diode is developed in the InP material system. The electronic barrier is formed by a saw tooth type of conduction band bending which consists of a quaternary In0.52(AlyGa1-y)0.48As layer with 0 < y < ymax. This barrier is lattice matched for all y to InP and is embedded between two n+-InGaAs layers. By varying the maximum Al-content from ymax,1 = 0.7 to ymax,2 = 1 a variable barrier height is formed which enables a diode-type I-V characteristic by epitaxial design with an adjustable current density within 3 orders of magnitude. The high current density of the diode with the lower barrier height (ymax,1 = 0.7) makes it suitable for high frequency applications at low signal levels. RF measurements reveal a speed index of 52 ps/V at VD = 0.15 V. The device is investigated for RF-to-DC power conversion in UHF RFID transponders with low-amplitude RF signals.

  • Constant Bit-Rate Multi-Stage Rate Control for Rate-Distortion Optimized H.264/AVC Encoders

    Shuijiong WU  Peilin LIU  Yiqing HUANG  Qin LIU  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E93-D No:7
      Page(s):
    1716-1726

    H.264/AVC encoder employs rate control to adaptively adjust quantization parameter (QP) to enable coded video to be transmitted over a constant bit-rate (CBR) channel. In this topic, bit allocation is crucial since it is directly related with actual bit generation and the coding quality. Meanwhile, the rate-distortion-optimization (RDO) based mode-decision technique also affects performance a lot for the strong relation among mode, bits, and quality. This paper presents a multi-stage rate control scheme for R-D optimized H.264/AVC encoders under CBR video transmission. To enhance the precision of the complexity estimation and bit allocation, a frequency-domain parameter named mean-absolute-transform-difference (MATD) is adopted to represent frame and macroblock (MB) residual complexity. Second, the MATD ratio is utilized to enhance the accuracy of frame layer bit prediction. Then, by considering the bit usage status of whole sequence, a measurement combining forward and backward bit analysis is proposed to adjust the Lagrange multiplier λMODE on frame layer to optimize the mode decision for all MBs within the current frame. On the next stage, bits are allocated on MB layer by proposed remaining complexity analysis. Computed QP is further adjusted according to predicted MB texture bits. Simulation results show the PSNR improvement is up to 1.13 dB by using our algorithm, and the stress of output buffer control is also largely released compared with the recommended rate control in H.264/AVC reference software JM13.2.

  • Fixed-Width Group CSD Multiplier Design

    Yong-Eun KIM  Kyung-Ju CHO  Jin-Gyun CHUNG  Xinming HUANG  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:6
      Page(s):
    1497-1503

    This paper presents an error compensation method for fixed-width group canonic signed digit (GCSD) multipliers that receive a W-bit input and generate a W-bit product. To efficiently compensate for the truncation error, the encoded signals from the GCSD multiplier are used for the generation of the error compensation bias. By Synopsys simulations, it is shown that the proposed method leads to up to 84% reduction in power consumption and up to 78% reduction in area compared with the fixed-width modified Booth multipliers.

  • CSD-Based Programmable Multiplier Design for Predetermined Coefficient Groups

    Yong-Eun KIM  Kyung-Ju CHO  Jin-Gyun CHUNG  Xinming HUANG  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E93-A No:1
      Page(s):
    324-326

    An efficient multiplier design method for predetermined coefficient groups is presented based on the variation of canonic signed digit (CSD) encoding and partial product sharing. By applications to radix-24 FFT structure and the pulse-shaping filter design used in CDMA, it is shown that the proposed method significantly reduces the area, propagation delay and power consumption compared with previous methods.

  • A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback

    Zhangcai HUANG  Minglu JIANG  Yasuaki INOUE  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    806-814

    Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6 µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for 2.5V power supply voltages, respectively.

41-60hit(149hit)