The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.48

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E107-C No.5  (Publication Date:2024/05/01)

    Regular Section
  • An Extension of Physical Optics Approximation for Dielectric Wedge Diffraction for a TM-Polarized Plane Wave Open Access

    Duc Minh NGUYEN  Hiroshi SHIRAI  Se-Yun KIM  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/11/08
      Page(s):
    115-123

    In this study, the edge diffraction of a TM-polarized electromagnetic plane wave by two-dimensional dielectric wedges has been analyzed. An asymptotic solution for the radiation field has been derived from equivalent electric and magnetic currents which can be determined by the geometrical optics (GO) rays. This method may be regarded as an extended version of physical optics (PO). The diffracted field has been represented in terms of cotangent functions whose singularity behaviors are closely related to GO shadow boundaries. Numerical calculations are performed to compare the results with those by other reference solutions, such as the hidden rays of diffraction (HRD) and a numerical finite-difference time-domain (FDTD) simulation. Comparisons of the diffraction effect among these results have been made to propose additional lateral waves in the denser media.

  • Effects of Electromagnet Interference on Speed and Position Estimations of Sensorless SPMSM Open Access

    Yuanhe XUE  Wei YAN  Xuan LIU  Mengxia ZHOU  Yang ZHAO  Hao MA  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2023/11/10
      Page(s):
    124-131

    Model-based sensorless control of permanent magnet synchronous motor (PMSM) is promising for high-speed operation to estimate motor state, which is the speed and the position of the rotor, via electric signals of the stator, beside the inevitable fact that estimation accuracy is degraded by electromagnet interference (EMI) from switching devices of the converter. In this paper, the simulation system based on Luenberger observer and phase-locked loop (PLL) has been established, analyzing impacts of EMI on motor state estimations theoretically, exploring influences of EMI with different cutoff frequency, rated speeds, frequencies and amplitudes. The results show that Luenberger observer and PLL have strong immunity, which enable PMSM can still operate stably even under certain degrees of interference. EMI produces sideband harmonics that enlarge pulsation errors of speed and position estimations. Additionally, estimation errors are positively correlated with cutoff frequency of low-pass filter and the amplitude of EMI, and negatively correlated with rated speed of the motor and the frequency of EMI.  When the frequency is too high, its effects on motor state estimations are negligible. This work contributes to the comprehensive understanding of how EMI affects motor state estimations, which further enhances practical application of sensorless PMSM.

  • Simplified Reactive Torque Model Predictive Control of Induction Motor with Common Mode Voltage Suppression Open Access

    Siyao CHU  Bin WANG  Xinwei NIU  

     
    PAPER-Electronic Instrumentation and Control

      Pubricized:
    2023/11/30
      Page(s):
    132-140

    To reduce the common mode voltage (CMV), suppress the CMV spikes, and improve the steady-state performance, a simplified reactive torque model predictive control (RT-MPC) for induction motors (IMs) is proposed. The proposed prediction model can effectively reduce the complexity of the control algorithm with the direct torque control (DTC) based voltage vector (VV) preselection approach. In addition, the proposed CMV suppression strategy can restrict the CMV within ±Vdc/6, and does not require the exclusion of non-adjacent non-opposite VVs, thus resulting in the system showing good steady-state performance. The effectiveness of the proposed design has been tested and verified by the practical experiment. The proposed algorithm can reduce the execution time by an average of 26.33% compared to the major competitors.

  • Analysis of Optical Power Splitter with Resonator Structure Constructed by Two-Dimensional MDM Plasmonic Waveguide Open Access

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/12/07
      Page(s):
    141-145

    An efficient optical power splitter constructed by a metal-dielectric-metal plasmonic waveguide with a resonator structure has been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator structure consists of input/output waveguides and a narrow waveguide with a T-junction. The power splitter with the resonator structure is expressed by an equivalent transmission-line circuit. We can find that the transmittance and reflectance calculated by the FD-TD method and the equivalent circuit are matched when the difference in width between the input/output waveguides and the narrow waveguide is small. It is also shown that the transmission wavelength can be adjusted by changing the narrow waveguide lengths that satisfy the impedance matching condition in the equivalent circuit.

  • Optical Mode Multiplexer Using LiNbO3 Asymmetric Directional Coupler Enabling Voltage Control for Phase-Matching Condition Open Access

    Shotaro YASUMORI  Seiya MORIKAWA  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Shinya NAKAJIMA  Kouichi AKAHANE  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2023/11/29
      Page(s):
    146-149

    An optical mode multiplexer was newly designed and fabricated using LiNbO3 waveguides. The multiplexer consists of an asymmetric directional coupler capable of achieving the phase-matching condition by the voltage adjustment. The mode conversion efficiency between TM0 and TM1 modes was quantitatively measured to be 0.86 at maximum.

  • A Simplified Method for Determining Mathematical Representation of Microwave Oscillator Load Characteristics Open Access

    Katsumi FUKUMOTO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/10/26
      Page(s):
    150-152

    Previously a method was reported to determine the mathematical representation of the microwave oscillator admittance by using numerical calculation. When analyzing the load characteristics and synchronization phenomena by using this formula, the analysis results meet with the experimental results. This paper describes a method to determine the mathematical representation manually.