The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E80-C No.9  (Publication Date:1997/09/25)

    Special Issue on High Density Information Recording Technologies
  • FOREWORD

    Yoshihisa NAKAMURA  Shigeru TSUNASHIMA  Kazuhiro OUCHI  

     
    FOREWORD

      Page(s):
    1133-1134
  • Novel Technologies for High-Performance Hard Disk Drives

    Kohki NODA  Masahiko NAOE  

     
    INVITED PAPER

      Page(s):
    1135-1141

    Since the introduction of magnetoresistive (MR) heads, the areal density of hard disk drives (HDDs) has been increasing at a rate of 60% a year, and has now reached 1.4 Gb/sq. in. The data rate has also been increasing at a rate of 40% or more, and this has recently become a key factor in the ability of multimedia applications to transfer stored data rapidly from the HDD to the PC or workstation. Currently, data rates of around 150 Mb/sec are being implemented in products. In this study, key technologies for increasing both the areal density and the data rate of HDDs are proposed. If they are implemented, an areal density of around 10 Gb/sq. in. and a data rate of 200 Mb/sec or more can be achieved.

  • A Study on Key Technologies to Realize Magneto-Optical Storage of Over 7 GBytes in CD Sized Disk

    Kenji TORAZAWA  Satoshi SUMI  Seiji YONEZAWA  Naomi SUZUKI  Yasuhito TANAKA  Akira TAKAHASHI  Yoshiteru MURAKAMI  Norio OHTA  

     
    INVITED PAPER

      Page(s):
    1142-1148

    Recently, many types of high-density recording technologies for future MO (Magneto-Optical) storage have been reported. MSR (Magnetically Induced Super Resolution) technology is one of the most promising candidates, and over ten types of MSR technologies have been already proposed. However, they are not well-discussed from the viewpoint of total recording technology which would include the recording and readout methods, the pick-up technology and the signal processing technology. Key technologies for realizing MO storage of over 7 GBytes in a CD-sized disk using a red laser are proposed, and the experimental results pertaining to each key technology are described. The write/read characteristics were examined for the CAD (Center Aperture Detection)-MSR disk. From the characteristics of the CAD-MSR disk combined with laser pumped magnetic field modulation recording, it was shown that land/groove (0.7 µm width) recording with the linear density of 0.27 µm/bit and track pitch below 0.7 µm can be realized. It was also shown that CAD-MSR disk is well combined with an OSR (Optical Super Resolution) pick up, laser pumped read-out and PRML (Partial Response Maximum Likelihood) technologies which are very useful to achieve a high density MO disk. Using CAD-MSR disk combined with above technologies together, high density write/read with a bit length of 0.2 µm and a track pitch of 0.6 µm should be realized with using the laser of 635 nm wavelength. Applying the CAD-MSR disks to a CD sized MO disk, the capacity becomes over 7 GBytes (Format efficiency: 80%), which is 20 times higher than 5.25 inches MO disk and 1.5 times than DVD-ROM.

  • Simplification of Optical Disk Cluster Drive

    Kunimaro TANAKA  Yoshinori NEGISHI  Kyosuke YOSHIMOTO  Yasunori TAKAHASHI  

     
    PAPER

      Page(s):
    1149-1153

    Small-scale video on demand system will be necessary in the future. Cluster drives, which use optical disk drives, are a good buffer memory for this purpose because the cost per megabyte is low. An ordinary optical cluster drive has many SCSI buses and up to seven optical drives are connected to each SCSI bus. One drive from each bus is assembled to make a group of a cluster drive. The difference betweeen SCSI bus data transfer rate and sustained disk transfer rate enables the cluster drive to be simplified. Several drives on an SCSI bus make a sub-group. The video data is striped onto those sub-groups. When the total data transfer rate from disks within a sub-group exceeds the bus transfer rate, some drives can not acquire the bus. When drives connected to one SCSI bus are not identical, the block size of the data to be recorded on each drive has to be adjusted so that the maximum effective data transfer rate can be obtained. When the cycle times of a slow and fast drive are set identical, the effective data transfer rate is maximum, where one cycle consists of command time, minimum bus free time, disk read time, and bus transfer time.

  • SNR Evaluation of Punctured Convolutional Coded PR4ML System in Digital Magnetic Recording with Partial Erasure Effect

    Yoshihiro OKAMOTO  Minoru SOUMA  Shin TOMIMOTO  Hidetoshi SAITO  Hisashi OSAWA  

     
    PAPER

      Page(s):
    1154-1160

    A punctured convolutional coded PR4ML system for digital magnetic recording, which applies a punctured coding method to the convolutional code and records the punctured code sequences on two tracks, is proposed. In this study, the bit error rate performance of the proposed system is obtained by computer simulation taking account of partial erasure, which is one of the nonlinear distortions at high densities, and it is compared with those of a conventional 8/9 coded PR4ML system and an I-NRZI coded PR4ML system. The results show that the proposed system is hardly affected by partial erasure and exhibits good performance in high-density recording. A bit error rate of 10-4 can be achieved with SNR's of approximately 13.2 dB and 9.1 dB less than those of the conventional 8/9 coded and I-NRZI coded PR4ML systems, respectively, at a normalized linear density of 3.

  • GMR and Characterization of Microstructures in Ion-Beam Cosputtered CoAg Granular Films

    Hai SANG  Gang NI  ShuiYuan ZHANG  YouWei DU  SaiPeng WONG  Ning KE  WingYiu CHEUNG  

     
    PAPER

      Page(s):
    1161-1167

    A series of CoxAg1-x (0x100at.%) granular films were prepared using the ion-beam cosputtering technique at different substrate temperatures. Systematic investigations have been carried out on the giant magnetoresistance (GMR) effect and characterization of microstructures of these samples. The magnetoresistance ratio depends strongly on cobalt concentration, substrate temperature, and annealing treatment. The optimal value of GMR was observed in Co22Ag78 sample prepared at the temperature of 300 K. Microstructures of as-deposited and annealed samples were characterized by structural analyses. For Co22Ag78 sample, real-time in situ observation by TEM together with FMR spectra indicates that the size and shape of cobalt granules evolve primarily along the film plane during annealing. The results of FMR also provide that the cobalt granules remain single-domain particles after annealing at temperatures up to 700 K.

  • Environmental Temperature Effect on Magnetization Stability in Particulate Recording Media

    Toshiyuki SUZUKI  Tomohiro MITSUGI  

     
    PAPER

      Page(s):
    1168-1173

    This paper reports the thermal stability of particulate media, which include Co-Fe oxide, CrO2, and thick and thin MP tapes. By measuring the time decay of magnetization at room temperature, fluctuation fields were obtained as a function of reverse applied field. It was clarified that the fluctuation field has a constant and minimum value when the reverse applied field is equal to coercivity. Minimum fluctuation fields for the four particulate tapes were measured at several environmental temperatures ranging from -75 to +100. It was also clarified that the fluctuation field normalized by remanence coercivity increases as the environmental temperature increases for all tapes, indicating that it is a good measure of thermal stability. Activation volumes were also deduced as a function of temperature.

  • Effects of Ta and Pt Addition on Magnetic Properties in CoCrTaPt Perpendicular Magnetic Recording Media

    In Seon LEE  Jung Hyuk KOH  Taek Dong LEE  

     
    PAPER

      Page(s):
    1174-1179

    With the rapid increase in recording density in recent years, the development of media with high coercivity and low noise has become an important issue in perpendicular as well as longitudinal recording. Compared with the CoCr binary system, the CoCrTa system is more effective in increasing coercivity. The increase in coercivity is due to not Ta segregation but to enhanced Cr segregation at column boundaries caused by Ta addition. When a Ti underlayer with uniform thickness was used, there was no improvement in c-axis alignment of the magnetic layers in CoCrTa and CoCrPt films, although the lattice mismatch of Co ternary alloys with Ti was much reduced compared with that of the CoCr film with Ti. This indicates that there may be no direct heteroepitaxial relationship between Ti underlayer and CoCr alloys at the Ti-Co alloy interface. In the case of the CoCrPt film, perpendicular coercivity increased linearly as Pt content increased up to 10at%. When Pt content was about 13at%, the shape of the M-H loop showed characteristics of domain wall motion reversal, which indicated strong exchange coupling among columns. When Ta content was increased to 4at% in the CoCrPt film, perpendicular coercivity increased and the shape of the M-H loop suggested that the domain wall motion reversal behavior was much reduced. This is thought to be associated with Cr segregation at column boundaries by Ta addition.

  • Time Dependence of Magnetic Properties in Perpendicular Recording Media

    Naoki HONDA  Kazuhiro OUCHI  

     
    PAPER

      Page(s):
    1180-1186

    Time decay of magnetic properties in perpendicular magnetic recording media was studied. It was suggested that magnetization in media with a low energy ratio, KV/kT, of 50 is thermally stable in the absence of a demagnetizing field while coercivity exhibits a large time dependence. Magnetization in perpendicular recording media exhibited an appreciable time decay even for films with a large energy ratio of 300. The decay is attributed to the small perpendicular squareness due to a large perpendicular demagnetizing field acting in the media. The recording density dependence of the time decay in the output was explained in terms of the change in the demagnetizing field with the density. It is concluded that the use of media with large squareness as well as large energy ratio effectively reduces time decay in the output.

  • Experimental Study of Nonlinear Transition Shift in Perpendicular Magnetic Recording with Single-Pole Head

    Hiroaki MURAOKA  Yoshihisa NAKAMURA  

     
    PAPER

      Page(s):
    1187-1193

    Nonlinear phenomena in perpendicular magnetic recording employing a single-pole head and a double-layered medium were investigated. First, measurement of linear superposition in the time domain indicated than the amount of nonlinear transition shift (NLTS) was less than 10 nm. It was concluded that the nonlinearity was caused by transition shift, not by waveform distortion. By interpreting the results, we proved that the NLTS was strongly related with head field gradient and interference field from recorded magnetization. Dependence on head parameter was examined by experiments. Based on the results, a single-pole head with which transition shift can be reduced was proposed. Pseudo-random sequence analysis revealed that NLTS was several percent even at 318 kFRPI, or at a bit interval of 80 nm, which agreed with the result of measurement of linear superposition in the time domain analysis. Experiments showed that NLTS increases the shortest bit length, in contrast with the case of longitudinal recording.

  • An Improved Technique to Measure Nonlinear Phase Shift and Amplitude Distortion

    Naoki HONDA  Takashi KOMAKINE  Kazuhiro OUCHI  

     
    PAPER

      Page(s):
    1194-1202

    A modified frequency domain method for analyzing nonlinear waveform distortion in a magnetic recording process is presented. The measurement technique combines a 5th harmonic measurement technique, which uses a specific 30-bit pattern including dibits, and a precompensation technique for the dibits. The 5th harmonic voltage ratio given by the former technique includes the amount of NLTS (Nonlinear transition shift) and PE (Partial erasure) in dibits. The latter precompensation technique is employed to evaluate the PE as the minimum in the 5th harmonic voltage ratio. The true NLTS can be estimated from the amount of distortion and the evaluated PE. The high accuracy of the technique was confirmed by an examination using a pulse pattern generator with varied phase and amplitude. Finally, the effects of medium properties such as coercivity and squareness on the nonlinear distortions have been investigated by applying the technique to particulate flexible media. The NLTS increased with squareness from 3.5% to 7% while PE was less than 6% for any squareness at a recording density of 76 kFRPI. When coercivity became large, NLTS and PE decreased. The direction of NLTS for Ba-ferrite media agreed with that for a perpendicular Co-Cr thin-film medium.

  • Adaptive Biasing Folded Cascode CMOS OP Amp with Continuous-Time Push-Pull CMFB Scheme

    Jae-Yoon SIM  Cheol-Hee LEE  Won-Chang JEONG  Hong-June PARK  

     
    PAPER-Electronic Circuits

      Page(s):
    1203-1210

    A fully differential folded cascode CMOS OP amp is combined with an adaptive bias OTA to increase the slew rate, and a continuous-time CMFB circuit with a push-pull type combination of a NMOS input and a PMOS input differential amplifiers is used to maximize the output voltage swing. The fabricated OP amp using a 0.8 µm digital CMOS process gives more than three times improvement in slew rate with a 15% increase in DC power consumption and a 7.5% increase in chip area compared to the conventional OP amp fabricated on the same die. The output voltage swing was measured to be -0.75 V -0.7 V at the supply voltage of +/-1.2 V.

  • Transmission-Line Coupling of Active Microstrip Antennas for One- and Two-Dimensional Phased Arrays

    Ragip ISPIR  Shigeji NOGI  Minoru SANAGI  Kiyoshi FUKUI  

     
    PAPER-Microwave and Millimeter Wave Technology

      Page(s):
    1211-1220

    Several types of transmission-line coupling are analyzed to use in one- and two-dimensional active antenna arrays, and a method is developed to scan the beam of the arrays using the mutual locking theory. To compensate the undesired effect of strong radiative coupling of the nearest neighbor elements on the phased array performance, addition of resistive stubs to the end elements is proposed. In a 14 array it was observed that after the connection of resistive stubs, the scanning range of the array increased considerably. The effect of oscillator amplitudes on the phased array behavior is explored numerically. In the experiments main beam of 22 and 33 active antenna arrays were steered up to 25 and 15, respectively in the H-plane.