The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

1-20hit(5768hit)

  • Evaluating Introduction of Systems by Goal Dependency Modeling Open Access

    Haruhiko KAIYA  Shinpei OGATA  Shinpei HAYASHI  

     
    PAPER-Software Engineering

      Pubricized:
    2024/06/11
      Vol:
    E107-D No:10
      Page(s):
    1297-1311

    Before introducing systems to an activity in a business or in daily life, the effects of these systems should first be carefully examined by analysts. Thus, methods for examining such effects are required at the early stage of requirements analysis. In this study, we propose and evaluate an analysis method using a modeling notation for this purpose, called goal dependency modeling and analysis (GDMA). In an activity, an actor, such as a person or a system, expects a goal to be achieved. The actor or another actor will achieve this goal. We focus herein on such a goal and the two different roles played by the actors. In GDMA, the dependencies in the roles of the two actors about a goal are mainly represented. GDMA enables analysts to observe the change of actors, their expectations, and abilities by using metrics. Each metric is defined on the basis of the GDMA meta-model. Therefore, GDMA enables them to decide whether the change is good or bad both quantitatively and qualitatively for the people. We evaluate GDMA by describing models of the actual system introduction written in the literatures and explain the effects caused by this introduction. In addition, CASE tools are crucial in efficiently and accurately performing GDMA. Hence, we develop its tools by extending an existing UML modeling tool.

  • A Two-Phase Algorithm for Reliable and Energy-Efficient Heterogeneous Embedded Systems Open Access

    Hongzhi XU  Binlian ZHANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/27
      Vol:
    E107-D No:10
      Page(s):
    1285-1296

    Reliability is an important figure of merit of the system and it must be satisfied in safety-critical applications. This paper considers parallel applications on heterogeneous embedded systems and proposes a two-phase algorithm framework to minimize energy consumption for satisfying applications’ reliability requirement. The first phase is for initial assignment and the second phase is for either satisfying the reliability requirement or improving energy efficiency. Specifically, when the application’s reliability requirement cannot be achieved via the initial assignment, an algorithm for enhancing the reliability of tasks is designed to satisfy the application’s reliability requirement. Considering that the reliability of initial assignment may exceed the application’s reliability requirement, an algorithm for reducing the execution frequency of tasks is designed to improve energy efficiency. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume less energy while satisfying the application’s reliability requirements.

  • Millimeter-Wave Transceiver Utilizing On-Chip Butler Matrix for Simultaneous 5G Relay Communication and Wireless Power Transfer Open Access

    Keito YUASA  Michihiro IDE  Sena KATO  Kenichi OKADA  Atsushi SHIRANE  

     
    PAPER

      Pubricized:
    2024/04/15
      Vol:
    E107-C No:10
      Page(s):
    408-415

    This paper introduces a wireless-powered relay transceiver designed to extend 5G millimeter-wave coverage. It employs an on-chip butler matrix, enabling beam control-free operation. The prototype includes PCB array antennas and on-chip butler matrix and rectifiers manufactured using a Si CMOS 65 nm process. The relay transceiver performs effectively in beam angles from -45° to 45°. In the 24 GHz wireless power transmission (WPT) mode, it generates 0.12 mW with 0 dBm total input power, boasting an RF-DC conversion efficiency of 12.2%. It also demonstrates communication performance at 28 GHz in both RX and TX modes with a 100 MHz bandwidth and 64QAM modulation.

  • Sub-60-mV Charge Pump and its Driver Circuit for Extremely Low-Voltage Thermoelectric Energy Harvesting Open Access

    Hikaru SEBE  Daisuke KANEMOTO  Tetsuya HIROSE  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    400-407

    Extremely low-voltage charge pump (ELV-CP) and its dedicated multi-stage driver (MS-DRV) for sub-60-mV thermoelectric energy harvesting are proposed. The proposed MS-DRV utilizes the output voltages of each ELV-CP to efficiently boost the control clock signals. The boosted clock signals are used as switching signals for each ELV-CP and MS-DRV to turn switch transistors on and off. Moreover, reset transistors are added to the MS-DRV to ensure an adequate non-overlapping period between switching signals. Measurement results demonstrated that the proposed MS-DRV can generate boosted clock signals of 350 mV from input voltage of 60 mV. The ELV-CP can boost the input voltage of 100 mV with 10.7% peak efficiency. The proposed ELV-CP and MS-DRV can boost the low input voltage of 56 mV.

  • Chaos and Synchronization - Potential Ingredients of Innovation in Analog Circuit Design? Open Access

    Ludovico MINATI  

     
    INVITED PAPER

      Pubricized:
    2024/03/11
      Vol:
    E107-C No:10
      Page(s):
    376-391

    Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.

  • Advancements in Terahertz Communication: Harnessing the 300 GHz Band for High-Efficiency, High-Capacity Wireless Networks Open Access

    Minoru FUJISHIMA  

     
    INVITED PAPER

      Pubricized:
    2024/03/08
      Vol:
    E107-C No:10
      Page(s):
    366-375

    In this paper, we delve into wireless communications in the 300 GHz band, focusing in particular on the continuous bandwidth of 44 GHz from 252 GHz to 296 GHz, positioning it as a pivotal element in the trajectory toward 6G communications. While terahertz communications have traditionally been praised for the high speeds they can achieve using their wide bandwidth, focusing the beam has also shown the potential to achieve high energy efficiency and support numerous simultaneous connectivity. To this end, new performance metrics, EIRPλ and EINFλ, are introduced as important benchmarks for transmitter and receiver performance, and their consistency is discussed. We then show that, assuming conventional bandwidth and communication capacity, the communication distance is independent of carrier frequency. Located between radio waves and light in the electromagnetic spectrum, terahertz waves promise to usher in a new era of wireless communications characterized not only by high-speed communication, but also by convenience and efficiency. Improvements in antenna gain, beam focusing, and precise beam steering are essential to its realization. As these technologies advance, the paradigm of wireless communications is expected to be transformed. The synergistic effects of antenna gain enhancement, beam focusing, and steering will not only push high-speed communications to unprecedented levels, but also lay the foundation for a wireless communications landscape defined by unparalleled convenience and efficiency. This paper will discuss a future in which terahertz communications will reshape the contours of wireless communications as the realization of such technological breakthroughs draws near.

  • Uniform Microwave Heating via Electromagnetic Coupling Using Zeroth-Order Resonators Open Access

    Baku TAKAHARA  Tomohiko MITANI  Naoki SHINOHARA  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    340-348

    We propose microwave heating via electromagnetic coupling using zeroth-order resonators (ZORs) to extend the uniform heating area. ZORs can generate resonant modes with a wavenumber of 0, which corresponds to an infinite guide wavelength. Under this condition, uniform heating is expected because the resulting standing waves would not have nodes or antinodes. In the design proposed in this paper, two ZORs fabricated on dielectric substrates are arranged to face each other for electromagnetic coupling, and a sample placed between the resonators is heated. A single ZOR was investigated using a 3D electromagnetic simulator, and the resonant frequency and electric field distribution of the simulated ZOR were confirmed to be in good agreement with those of the fabricated ZOR. Simulations of two ZORs facing each other were then conducted to evaluate the performance of the proposed system as a heating apparatus. It was found that a resonator spacing of 25 mm was suitable for uniform heating. Heating simulations of SiC and Al2O3 sheets were performed with the obtained structure. The heating uniformity was evaluated by the width L50% over which the power loss distribution exceeds half the maximum value. This evaluation index was equal to 0.397λ0 for SiC and 0.409λ0 for Al2O3, both of which exceed λ0/4, the distance between a neighboring node and antinode of a standing wave, where λ0 is the free-space wavelength. Therefore, the proposed heating apparatus is effective for uniform microwave heating. Because of the different electrical parameters of the heated materials, SiC can be easily heated, whereas Al2O3 heats little. Finally, heating experiments were performed on each of these materials. Good uniformity in temperature was obtained for both SiC and Al2O3 sheets.

  • Efficiency Enhancement of a Single-Diode Rectenna Using Harmonic Control of the Antenna Impedance Open Access

    Katsumi KAWAI  Naoki SHINOHARA  Tomohiko MITANI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    323-331

    This study introduces a novel single-diode rectenna, enhancing the rf-dc conversion efficiency using harmonic control of the antenna impedance. We employ source-pull simulations encompassing the fundamental frequency and the harmonics to achieve a highly efficient rectenna. The results of the source-pull simulations delineate the source-impedance ranges required for enhanced efficiency at each harmonic. Based on the source-pull simulation results, we designed two inverted-F antenna with input impedances within and without these identified source impedance ranges. Experimental results show that the proposed rectenna has a maximum rf-dc conversion efficiency of 75.9% at the fundamental frequency of 920 MHz, an input power of 10.8 dBm, and a load resistance of 1 kΩ, which is higher than that of the comparative rectenna without harmonic control of the antenna impedance. This study demonstrates that the proposed rectenna achieves high efficiency through the direct connection of the antenna and the single diode, along with harmonic control of the antenna impedance.

  • Load-Independent Class-E Design with Load Adjustment Circuit Inverter Considering External Quality Factor Open Access

    Akihiko ISHIWATA  Yasumasa NAKA  Masaya TAMURA  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    315-322

    The load-independent zero-voltage switching class-E inverter has garnered considerable interest as an essential component in wireless power transfer systems. This inverter achieves high efficiency across a broad spectrum of load conditions by incorporating a load adjustment circuit (LAC) subsequent to the resonant filter. Nevertheless, the presence of the LAC influences the output impedance of the inverter, thereby inducing a divergence between the targeted and observed output power, even in ideal lossless simulations. Consequently, iterative adjustments to component values are required via an LC element implementation. We introduce a novel design methodology that incorporates an external quality factor on the side of the resonant filter, inclusive of the LAC. Thus, the optimized circuit achieves the intended output power without necessitating alterations in component values.

  • Japanese Institutionalization and Global Standardization of Wireless Power Transmission, and Recently R&D Trend in Japan Open Access

    Takuya FUJIMOTO  

     
    INVITED PAPER

      Pubricized:
    2024/04/23
      Vol:
    E107-C No:10
      Page(s):
    299-306

    In Japan, research on spatial transmission Wireless Power Transfer/Transmission (WPT) for long-distance power transmission has been conducted ahead of the rest of the world; however, until 2022, there has been no category under the Radio Law, and it has been treated as an experimental station. The authors are working on Japanese institutionalization (revision of ministerial ordinances) and global standardization of this spatial transmission WPT for social implementation. This paper describes the Japanese and international institutionalization and standardization trends. In addition, as the latest trend in R&D trends, as the next step of institutionalization, the author introduces two national projects that are being worked on by industry, academia, and government for Step 2, which can be used for a wider range of applications by relaxing the scope of use and restrictions from Step 1, which has various restrictions. The first is about the Cross-ministerial Strategic Innovation Promotion Program (SIP) Phase 2. In SIP Phase 2, we conducted R&D on “WPT system for sensor networks and mobile devices”. This R&D is research on detecting and avoiding people so that radio exposure does not exceed protection guidelines and detecting incumbent radios and avoiding harmful interference so that more power can be transmitted under coexistence conditions. The other is “Research and Development for Expansion of Radio Resources” to be conducted by the Ministry of Internal Affairs and Communications (MIC), which is scheduled for four years from FY2022. This is also a more concrete research and development project for Step 2 institutionalization, along with the results of the SIP mentioned above.

  • NRD Guide as a Transmission Medium Launched from Japan at Millimeter-Wave Frequency Applications Open Access

    Futoshi KUROKI  

     
    INVITED PAPER

      Pubricized:
    2024/04/12
      Vol:
    E107-C No:10
      Page(s):
    264-273

    Nonradiative dielectric waveguide is a transmission medium for millimeter-wave integrated circuits, invented in Japan. This transmission line is characterized by low transmission loss and non-radiating nature in bends and discontinuities. It has been actively researched from 1980 to 2000, primarily at Tohoku University. This paper explains the fundamental characteristics, including passive and active circuits, and provides an overview of millimeter-wave systems such as gigabit-class ultra-high-speed data transmission applications and various radar applications. Furthermore, the performance in the THz frequency band, where future applications are anticipated, is also discussed.

  • Cascaded Deep Neural Network for Off-Grid Direction-of-Arrival Estimation Open Access

    Huafei WANG  Xianpeng WANG  Xiang LAN  Ting SU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:10
      Page(s):
    633-644

    Using deep learning (DL) to achieve direction-of-arrival (DOA) estimation is an open and meaningful exploration. Existing DL-based methods achieve DOA estimation by spectrum regression or multi-label classification task. While, both of them face the problem of off-grid errors. In this paper, we proposed a cascaded deep neural network (DNN) framework named as off-grid network (OGNet) to provide accurate DOA estimation in the case of off-grid. The OGNet is composed of an autoencoder consisted by fully connected (FC) layers and a deep convolutional neural network (CNN) with 2-dimensional convolutional layers. In the proposed OGNet, the off-grid error is modeled into labels to achieve off-grid DOA estimation based on its sparsity. As compared to the state-of-the-art grid-based methods, the OGNet shows advantages in terms of precision and resolution. The effectiveness and superiority of the OGNet are demonstrated by extensive simulation experiments in different experimental conditions.

  • Anti-Interception Vortex Microwave Photon Transmission with Covert Differential Channel Open Access

    Yuanhe WANG  Chao ZHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/06/14
      Vol:
    E107-A No:10
      Page(s):
    1621-1622

    With the emphasis on personal information privacy protection in wireless communications, the new dimension low-interception covert transmission technology represented by the vortex wave with Orbital Angular Momentum (OAM) has received attention from both academia and industry. However, the current OAM low-interception transmission techniques all assume that the eavesdropper can only receive plane wave signals, which is a very ideal situation. Once the eavesdropper is configured with an OAM sensor, the so-called mode covert channel will be completely exposed. To solve this problem, this paper proposes a vortex microwave photon low-interception transmission method. The proposed method utilizes the differential operation between plane and vortex microwave photons signals to construct the covert differential channel, which can hide the user data in the mode domain. Compared with the traditional spread spectrum transmission, our proposed covert differential channel schemes need less transmitted power to achieve reliable transmission, which means less possibility of being intercepted by the eavesdropper.

  • Computer-Aided Design of Cross-Voltage-Domain Energy-Optimized Tapered Buffers Open Access

    Zhibo CAO  Pengfei HAN  Hongming LYU  

     
    PAPER-Electronic Circuits

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:9
      Page(s):
    245-254

    This paper introduces a computer-aided low-power design method for tapered buffers that address given load capacitances, output transition times, and source impedances. Cross-voltage-domain tapered buffers involving a low-voltage domain in the frontier stages and a high-voltage domain in the posterior stages are further discussed which breaks the trade-off between the energy dissipation and the driving capability in conventional designs. As an essential circuit block, a dedicated analytical model for the level-shifter is proposed. The energy-optimized tapered buffer design is verified for different source and load conditions in a 180-nm CMOS process. The single-VDD buffer model achieves an average inaccuracy of 8.65% on the transition loss compared with Spice simulation results. Cross-voltage tapered buffers can be optimized to further remarkably reduce the energy consumption. The study finds wide applications in energy-efficient switching-mode analog applications.

  • A Novel 3D Non-Stationary Vehicle-to-Vehicle Channel Model with Circular Arc Motions Open Access

    Zixv SU  Wei CHEN  Yuanyuan YANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:9
      Page(s):
    607-619

    In this paper, a cluster-based three-dimensional (3D) non-stationary vehicle-to-vehicle (V2V) channel model with circular arc motions and antenna rotates is proposed. The channel model simulates the complex urban communication scenario where clusters move with arbitrary velocities and directions. A novel cluster evolution algorithm with time-array consistency is developed to capture the non-stationarity. For time evolution, the birth-and-death (BD) property of clusters including birth, death, and rebirth are taken into account. Additionally, a visibility region (VR) method is proposed for array evolution, which is verified to be applicable to circular motions. Based on the Taylor expansion formula, a detailed derivation of space-time correlation function (ST-CF) with circular arc motions is shown. Statistical properties including ST-CF, Doppler power spectrum density (PSD), quasi-stationary interval, instantaneous Doppler frequency, root mean square delay spread (RMS-DS), delay PSD, and angular PSD are derived and analyzed. According to the simulated results, the non-stationarity in time, space, delay, and angular domains is captured. The presented results show that motion modes including linear motions as well as circular motions, the dynamic property of the scattering environment, and the velocity of the vehicle all have significant impacts on the statistical properties.

  • A Distributed Efficient Blockchain Oracle Scheme for Internet of Things Open Access

    Youquan XIAN  Lianghaojie ZHOU  Jianyong JIANG  Boyi WANG  Hao HUO  Peng LIU  

     
    PAPER-Network System

      Vol:
    E107-B No:9
      Page(s):
    573-582

    In recent years, blockchain has been widely applied in the Internet of Things (IoT). Blockchain oracle, as a bridge for data communication between blockchain and off-chain, has also received significant attention. However, the numerous and heterogeneous devices in the IoT pose great challenges to the efficiency and security of data acquisition for oracles. We find that the matching relationship between data sources and oracle nodes greatly affects the efficiency and service quality of the entire oracle system. To address these issues, this paper proposes a distributed and efficient oracle solution tailored for the IoT, enabling fast acquisition of real-time off-chain data. Specifically, we first design a distributed oracle architecture that combines both Trusted Execution Environment (TEE) devices and ordinary devices to improve system scalability, considering the heterogeneity of IoT devices. Secondly, based on the trusted node information provided by TEE, we determine the matching relationship between nodes and data sources, assigning appropriate nodes for tasks to enhance system efficiency. Through simulation experiments, our proposed solution has been shown to effectively improve the efficiency and service quality of the system, reducing the average response time by approximately 9.92% compared to conventional approaches.

  • Spatial Extrapolation of Early Room Impulse Responses with Noise-Robust Physics-Informed Neural Network Open Access

    Izumi TSUNOKUNI  Gen SATO  Yusuke IKEDA  Yasuhiro OIKAWA  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2024/04/08
      Vol:
    E107-A No:9
      Page(s):
    1556-1560

    This paper reports a spatial extrapolation of the sound field with a physics-informed neural network. We investigate the spatial extrapolation of the room impulse responses with physics-informed SIREN architecture. Furthermore, we proposed a noise-robust extrapolation method by introducing a tolerance term to the loss function.

  • Enhanced Radar Emitter Recognition with Virtual Adversarial Training: A Semi-Supervised Framework Open Access

    Ziqin FENG  Hong WAN  Guan GUI  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2024/05/15
      Vol:
    E107-A No:9
      Page(s):
    1534-1541

    Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.

  • Tracking WebVR User Activities through Hand Motions: An Attack Perspective Open Access

    Jiyeon LEE  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2024/04/16
      Vol:
    E107-D No:8
      Page(s):
    1089-1092

    With the rapid advancement of graphics processing units (GPUs), Virtual Reality (VR) experiences have significantly improved, enhancing immersion and realism. However, these advancements also raise security concerns in VR. In this paper, I introduce a new attack leveraging known WebVR vulnerabilities to track the activities of VR users. The proposed attack leverages the user’s hand motion information exposed to web attackers, demonstrating the capability to identify consumed content, such as 3D images and videos, and pilfer private drawings created in a 3D drawing app. To achieve this, I employed a machine learning approach to process controller sensor data and devised techniques to extract sensitive activities during the use of target apps. The experimental results demonstrate that the viewed content in the targeted content viewer can be identified with 90% accuracy. Furthermore, I successfully obtained drawing outlines that precisely match the user’s original drawings without performance degradation, validating the effectiveness of the attack.

  • New Bounds for Quick Computation of the Lower Bound on the Gate Count of Toffoli-Based Reversible Logic Circuits Open Access

    Takashi HIRAYAMA  Rin SUZUKI  Katsuhisa YAMANAKA  Yasuaki NISHITANI  

     
    PAPER

      Pubricized:
    2024/05/10
      Vol:
    E107-D No:8
      Page(s):
    940-948

    We present a time-efficient lower bound κ on the number of gates in Toffoli-based reversible circuits that represent a given reversible logic function. For the characteristic vector s of a reversible logic function, κ(s) closely approximates σ-lb(s), which is known as a relatively efficient lower bound in respect of evaluation time and tightness. The primary contribution of this paper is that κ enables fast computation while maintaining a tightness of the lower bound, approximately equal to σ-lb. We prove that the discrepancy between κ(s) and σ-lb(s) is at most one only, by providing upper and lower bounds on σ-lb in terms of κ. Subsequently, we show that κ can be calculated more efficiently than σ-lb. An algorithm for κ(s) with a complexity of 𝓞(n) is presented, where n is the dimension of s. Experimental results comparing κ and σ-lb are also given. The results demonstrate that the two lower bounds are equal for most reversible functions, and that the calculation of κ is significantly faster than σ-lb by several orders of magnitude.

1-20hit(5768hit)