Baoquan ZHONG Zhiqun CHENG Minshi JIA Bingxin LI Kun WANG Zhenghao YANG Zheming ZHU
Kazuya TADA
Suguru KURATOMI Satoshi USUI Yoko TATEWAKI Hiroaki USUI
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
Hiroki Hoshino Kentaro Kusama Takayuki Arai
Tsuneki YAMASAKI
Kengo SUGAHARA
Cuong Manh BUI Hiroshi SHIRAI
Hiroyuki DEGUCHI Masataka OHIRA Mikio TSUJI
Hiroto Tochigi Masakazu Nakatani Ken-ichi Aoshima Mayumi Kawana Yuta Yamaguchi Kenji Machida Nobuhiko Funabashi Hideo Fujikake
Yuki Imamura Daiki Fujii Yuki Enomoto Yuichi Ueno Yosei Shibata Munehiro Kimura
Keiya IMORI Junya SEKIKAWA
Naoki KANDA Junya SEKIKAWA
Yongzhe Wei Zhongyuan Zhou Zhicheng Xue Shunyu Yao Haichun Wang
Mio TANIGUCHI Akito IGUCHI Yasuhide TSUJI
Kouji SHIBATA Masaki KOBAYASHI
Zhi Earn TAN Kenjiro MATSUMOTO Masaya TAKAGI Hiromasa SAEKI Masaya TAMURA
Misato ONISHI Kazuhiro YAMAGUCHI Yuji SAKAMOTO
Koya TANIKAWA Shun FUJII Soma KOGURE Shuya TANAKA Shun TASAKA Koshiro WADA Satoki KAWANISHI Takasumi TANABE
Shotaro SUGITANI Ryuichi NAKAJIMA Keita YOSHIDA Jun FURUTA Kazutoshi KOBAYASHI
Ryosuke Ichikawa Takumi Watanabe Hiroki Takatsuka Shiro Suyama Hirotsugu Yamamoto
Chan-Liang Wu Chih-Wen Lu
Umer FAROOQ Masayuki MORI Koichi MAEZAWA
Ryo ITO Sumio SUGISAKI Toshiyuki KAWAHARAMURA Tokiyoshi MATSUDA Hidenori KAWANISHI Mutsumi KIMURA
Paul Cain
Arie SETIAWAN Shu SATO Naruto YONEMOTO Hitoshi NOHMI Hiroshi MURATA
Seiichiro Izawa
Hang Liu Fei Wu
Keiji GOTO Toru KAWANO Ryohei NAKAMURA
Takahiro SASAKI Yukihiro KAMIYA
Xiang XIONG Wen LI Xiaohua TAN Yusheng HU
Tohgo HOSODA Kazuyuki SAITO
Yihan ZHU Takashi OHSAWA
Shengbao YU Fanze MENG Yihan SHEN Yuzhu HAO Haigen ZHOU
Daisuke INOUE Tomomi MIYAKE Mitsuhiro SUGIMOTO
We propose a novel mechanism of short-term image-sticking phenomenon in in-plane switching liquid crystal displays (IPS LCDs) that is related to ionic relaxation generated by a vertical electric field caused by a flexoelectric effect. We discuss the differences between electric fields caused by the flexoelectric effect and those caused by DC bias voltage.
Kousuke KANAZAWA Shota KAZUNO Makiko OKUMURA
In this paper, we developed saccade-induced line displays including flashing period controllers. The displays speeded up the flashing period of one line using LED drivers and Arduino Uno equipped with AVR microcomputers. It was shown that saccades were easily induced when the observer alternately looks at the two fast flashing line displays apart. Also, we were able to find the optimum flashing period using a controller that can speed up the flashing period and change its speed. We found that the relationship between the viewing angle of the observer and the optimum flashing period is almost proportional.
Yuya HORII Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
Recently, a control technique of light distribution pattern has become important to improve the functionality and the light utilization efficiency of electronic displays, illumination devices and so on. As a light control technique, polymer-dispersed liquid crystals (PDLCs) have been commonly used so far. However, a precise control of the light diffusion distribution of conventional PDLC has been difficult due to the random polymer network structure, which results in the low light utilization efficiency. On the other hand, reverse-mode PDLCs with homogeneously aligned molecules can anisotropically diffuse light. The reverse-mode PDLC, however, has polarization dependency in the haze value due to homogeneously aligned molecules, which also results in the low light utilization efficiency. Therefore, it is necessary to establish the optimization method of light diffusion distribution without the molecules alignment treatment, and we have proposed a novel PDLC with structure-controlled polymer network which was fabricated by the irradiation with uni-directionally diffused UV light. In this paper, we investigated the effect of the process temperature during UV irradiation on the internal structure and light diffusion distribution of the proposed PDLC. As a result, in case that the mixture during UV irradiation was in isotropic phase, we clarified that the structure-controlled PDLCs with alternating striped LCs/polymer pattern could be obtained because the mixture was sufficiently irradiated with uni-directionally diffused UV light. For the high haze, this structure-controlled PDLC should be fabricated as low temperature as possible with maintaining the mixture in isotropic phase so that the mixture was not a nano-scaled molecular mixing state. Also, this PDLC had no polarization dependency in the haze value and could electrically switch the light distribution pattern between anisotropic light diffusion and light transmission. From the above results, we concluded that the proposed PDLC could precisely control the light diffusion distribution, and realize the high light utilization efficiency.
Koki WAKUNAMI Yasuyuki ICHIHASHI Ryutaro OI Makoto OKUI Boaz Jessie JACKIN Kenji YAMAMOTO
Computer-generated hologram based on ray-sampling plane method was newly applied to the projection-type holographic display that consists of the holographic projection and the holographic optical element screen. In the proposed method, geometric deformation characteristic of the holographic image via the display system was mathematically derived and canceled out by the coordinate transformation of ray-sampling condition to avoid the image distortion. In the experiment, holographic image reconstruction with the arbitral depth expression without image distortion could be optically demonstrated.
Takashiro TSUKAMOTO Yanjun ZHU Shuji TANAKA
In this paper, a proof-of-concept sensor platform for an all-in-one wireless bio sensor chip was developed and evaluated. An on-chip battery, an on-chip electrochromic display (ECD), a micro processor, a voltage converter and analog switches were implemented on a printed circuit board. Instead of bio-sensor, a temperature sensor was used to evaluate the functionality of the platform. The platform successfully worked in an electrolyte and the encoded measurement result was displayed on the ECD. The displayed data was captured by a CMOS digital camera and the measured data could be successfully decoded by a computer program.
Sung Jin KIM Jong Hoon CHOI Hyung Tae KIM Hee Nam CHAE Sung Min CHO
Amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by an advanced self-aligned imprint lithography (ASAIL) method with a hybrid etching process. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The hybrid etching process was newly applied in the original SAIL process for the purpose of reducing plasma damage of a-IGZO channel layer during plasma etching in the ASAIL process. This research demonstrated that the a-IGZO TFT could be successfully fabricated by the ASAIL process. In particular, the hybrid etching process applied in this paper can be utilized for the back-channel-etch type a-IGZO TFT and further extended for the roll-to-roll backplane process.
Liang CHEN Dongyi CHEN Xiao CHEN
Touch screen has become the mainstream manipulation technique on handheld devices. However, its innate limitations, e.g. the occlusion problem and fat finger problem, lower user experience in many use scenarios on handheld displays. Back-of-device interaction, which makes use of input units on the rear of a device for interaction, is one of the most promising approaches to address the above problems. In this paper, we present the findings of a user study in which we explored users' pointing performances in using two types of touch input on handheld devices. The results indicate that front-of-device touch input is averagely about two times as fast as back-of-device touch input but with higher error rates especially in acquiring the narrower targets. Based on the results of our study, we argue that in the premise of keeping the functionalities and layouts of current mainstream user interfaces back-of-device touch input should be treated as a supplement to front-of-device touch input rather than a replacement.
Risa TAKEDA Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
We examined single crystal growth of benzothienobenzothiophene-based organic semiconductors by solution coating method using liquid crystal and investigated its electrical characteristics. As the results, we revealed that the averaged mobility in the saturation region reached 2.08 cm2/Vs along crystalline b-axis, and 1.08 cm2/Vs along crystalline a-axis.
Seiya KAWAMORITA Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
In this paper, we examined the transfer method of fluororesin as the novel formation method of polymer wall in order to realize the lattice-shaped polymer walls without patterned light irradiation using photomask. We clarified that the transfer method was effective for formation of polymer wall structure on flexible substrate.
Yutaro KUGE Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
We have proposed a mortar-shaped structure to improve response time and alignment uniformity of twisted vertically aligned (TVA) mode liquid crystal displays (LCDs) for high-contrast reflective color LCDs. From the results of the simulation, we clarified that response time, alignment uniformity and viewing angle range of TVA-mode LCDs were improved by controlling the liquid crystal alignment axis-symmetrically in each pixel.
Kohei TERASHIMA Kazuhiro WAKO Yasuyuki FUJIHARA Yusuke AOYAGI Maasa MURATA Yosei SHIBATA Shigetoshi SUGAWA Takahiro ISHINABE Rihito KURODA Hideo FUJIKAKE
We have developed the high speed bandpass liquid crystal filter with narrow full width at half maximum (FWHM) of 5nm for real-time multi spectral imaging systems. We have successfully achieved short wavelength-switching time of 30ms by the optimization of phase retardation of thin liquid crystal cells.
Ryosuke SAITO Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
In this study, we evaluated the electro-optical characteristics and structural stability in curved state of dye-doped liquid crystal (LC) gel film for stretchable displays. As the results, maximum contrast ratio of 6.7:1 and suppression of LC flow were achieved by optimum of blend condition such as gelator and dye concentration.
Sirous TALEBI Ehsan ADIB Majid DELSHAD
This paper presents a high step-up DC-DC converter for low voltage sources such as solar cells, fuel cells and battery banks. A novel non isolated Zero-Voltage Switching (ZVS) interleaved DC-DC boost converter condition is introduced. In this converter, by using coupled inductor and active clamp circuit, the stored energy in leakage inductor is recycled. Furthermore, ZVS turn on condition for both main and clamp switches are provided. The active clamp circuit suppresses voltage spikes across the main switch and the voltage of clamp capacitor leads to higher voltage gain. In the proposed converter, by applying interleaved technique, input current ripple and also conduction losses are decreased. Also, with simple and effective method without applying any additional element, the input ripple due to couple inductors and active clamp circuit is cancelled to achieve a smooth low ripple input current. In addition, the applied technique in this paper leads to increasing the life cycle of circuit components which makes the proposed converter suitable for high power applications. Finally an experimental prototype of the presented converter with 40 V input voltage, 400 V output voltage and 200 W output power is implemented which verifies the theoretical analysis.
In this paper, we review a super-steep subthreshold slope (SS) (<1 mV/dec) body-tied (BT) silicon on insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) fabricated with 0.15 µm SOI technology and discuss the possibility of its use in ultralow voltage applications. The mechanism of the super-steep SS in the BT SOI MOSFET was investigated with technology computer-aided design simulation. The gate length/width and Si thickness optimizations promise further reductions in operation voltage, as well as improvement of the ION/IOFF ratio. In addition, we demonstrated control of the threshold voltage and hysteresis characteristics using the substrate and body bias in the BT SOI MOSFET.