The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.48

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E105-C No.1  (Publication Date:2022/01/01)

    Regular Section
  • Water Content Estimation in Thermal Insulation Layer Using Millimeter-Wave Optical Coherence Tomography

    Yushi TAMENORI  Haruka TOKUNAGA  Li YI  Tadao NAGATSUMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/08/05
      Page(s):
    1-8

    The demand for non-destructive inspection of the thermal insulation layer of Japanese houses has been increasing. Surface temperature measurement is commonly used for estimating the condition of the thermal insulation layer that is located inside the walls. However, the accuracy needs to be improved because this approach only considers the surface information. To evaluate the thermal insulation layer inside the walls, a millimeter-wave tomography system is proposed for measuring the water content. The system can provide ∼10 mm range resolution to differentiate the reflections from the thermal insulation layer behind the external wall. The Lichtenecker-Rother model is applied for the quantitative evaluation of the water content using the reflected signal. The proposed model is consistent with the experimental data, confirming that a maximum error of 16.0% is obtained. It is also demonstrated that the water content distribution can be visualized with a range resolution of 10.6 mm.

  • SRAM: A Septum-Type Polarizer Design Method Based on Superposed Even- and Odd-Mode Excitation Analysis

    Tomoki KANEKO  Hirobumi SAITO  Akira HIROSE  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/07/08
      Page(s):
    9-17

    This paper proposes an analytical method to design septum-type polarizers by assuming a polarizer as a series of four septum elements with a short ridge-waveguide approximation. We determine parameters of respective elements in such a manner that, at the center frequency, the reflection coefficient of the first element is equal to that of the second one, the reflection of the third one equals to that of the forth, and the electrical lengths of the first, second and third elements are 90 deg. We name this method the Short Ridge-waveguide Approximation Method (SRAM). We fabricated an X-band polarizer, which achieves a cross polarization discrimination (XPD) value of 40.7-64.1 dB over 8.0-8.4 GHz, without any numerical optimization.

  • 200W Four-Way Combined Pulsed Amplifier with 40% Power-Added Efficiency in X-Band

    Shubo DUN  Tiedi ZHANG  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/08/17
      Page(s):
    18-23

    This paper presents an X-band power-combined pulsed high power amplifier (HPA) based on the low insertion loss waveguide combiner. Relationships between the return loss and isolation of the magic Tee (MT) have been analyzed and the accurate design technique is given. The combination network is validated by the measurement of a single MT and a four-way passive network, and the characterization of the combined HPA module is designed, fabricated and discussed. The HPA delivers 200W output power with an associated power-added efficiency close to 40% within the frequency range of 7.8 GHz to 12.3 GHz. The combination efficiency is higher than 93%.

  • A Self-Powered Flyback Pulse Resonant Circuit for Combined Piezoelectric and Thermoelectric Energy Harvesting

    Huakang XIA  Yidie YE  Xiudeng WANG  Ge SHI  Zhidong CHEN  Libo QIAN  Yinshui XIA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/06/23
      Page(s):
    24-34

    A self-powered flyback pulse resonant circuit (FPRC) is proposed to extract energy from piezoelectric (PEG) and thermoelectric generators (TEG) simultaneously. The FPRC is able to cold start with the PEG voltage regardless of the TEG voltage, which means the TEG energy is extracted without additional cost. The measurements show that the FPRC can output 102 µW power under the input PEG and TEG voltages of 2.5 V and 0.5 V, respectively. The extracted power is increased by 57.6% compared to the case without TEGs. Additionally, the power improvement with respect to an ideal full-wave bridge rectifier is 2.71× with an efficiency of 53.9%.

  • Stochastic Modeling and Local CD Uniformity Comparison between Negative Metal-Based, Negative- and Positive-Tone Development EUV Resists

    Itaru KAMOHARA  Ulrich WELLING  Ulrich KLOSTERMANN  Wolfgang DEMMERLE  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/08/06
      Page(s):
    35-46

    This paper presents a simulation study on the printing behavior of three different EUV resist systems. Stochastic models for negative metal-based resist and conventional chemically amplified resist (CAR) were calibrated and then validated. As for negative-tone development (NTD) CAR, we commenced from a positive-tone development (PTD) CAR calibrated (material) and NTD development models, since state-of-the-art measurements are not available. A conceptual study between PTD CAR and NTD CAR shows that the stochastic inhibitor fluctuation differs for PTD CAR: the inhibitor level exhibits small fluctuation (Mack development). For NTD CAR, the inhibitor fluctuation depends on the NTD type, which is defined by categorizing the difference between the NTD and PTD development thresholds. Respective NTD types have different inhibitor concentration level. Moreover, contact hole printing between negative metal-based and NTD CAR was compared to clarify the stochastic process window (PW) for tone reversed mask. For latter comparison, the aerial image (AI) and secondary electron effect are comparable. Finally, the local CD uniformity (LCDU) for the same 20 nm size, 40 nm pitch contact hole was compared among the three different resists. Dose-dependent behavior of LCDU and stochastic PW for NTD were different for the PTD CAR and metal-based resist. For NTD CAR, small inhibitor level and large inhibitor fluctuation around the development threshold were observed, causing LCDU increase, which is specific to the inverse Mack development resist.

  • Simulation-Based Understanding of “Charge-Sharing Phenomenon” Induced by Heavy-Ion Incident on a 65nm Bulk CMOS Memory Circuit

    Akifumi MARU  Akifumi MATSUDA  Satoshi KUBOYAMA  Mamoru YOSHIMOTO  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/08/05
      Page(s):
    47-50

    In order to expect the single event occurrence on highly integrated CMOS memory circuit, quantitative evaluation of charge sharing between memory cells is needed. In this study, charge sharing area induced by heavy ion incident is quantitatively calculated by using device-simulation-based method. The validity of this method is experimentally confirmed using the charged heavy ion accelerator.