The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E97-C No.2  (Publication Date:2014/02/01)

    Regular Section
  • A Novel Fiber-Optic Light Concentrator with Scattering Parts

    Makoto TSUBOKAWA  Shinjo TATEYAMA  

     
    PAPER-Electromagnetic Theory

      Page(s):
    93-100

    We have designed a novel fiber-optic light concentrator with scattering layers and evaluated the light concentration characteristics by ray-trace simulations as functions of the parameters of the incident light angle and wavelength, as well as the waveguide structure. Unlike well-known luminescent solar concentrators, in our models, illuminating light is directly captured through the proposed waveguide structure. The optical efficiency in our fiber-optic models is remarkably improved in long-length regions compared with that in simple slab waveguides. In addition, the waveguide length required to effectively collect light is extended to 300mm and 1.5m for optical fibers with 1- and 10-mm core diameters, respectively, which are ten times longer than those in slab waveguides with an equivalent scale. Because of the cylindrical structure of optical fibers, we have also evaluated the sensitivity of our models to surrounding light. Consequently, an obvious directional property containing single or three peaks of the sensitivity is clarified, and their widths can be tuned by changing the width of the scattering parts. These results suggest that our models are suited for sensor devices such as optical receiving antennas, rather than simple light concentrators. Finally, we model a fiber-optic probe as an application and evaluate the light concentration characteristics when the concentrator is serially concatenated with a normal optical fiber.

  • 10-Gbit/s Bidirectional and 20-Gbit/s Unidirectional 2-ch Wireless Data Transmission System Using 120-GHz-Band Finline Orthomode Transducers

    Jun TAKEUCHI  Akihiko HIRATA  Hiroyuki TAKAHASHI  Naoya KUKUTSU  Yoshiaki YAMADA  Kei KITAMURA  Mitsuhiro TESHIMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    101-110

    This paper presents 10-Gbit/s bidirectional and 20-Gbit/s unidirectional wireless data transmission systems using 120-GHz-band finline orthomode transducers (OMTs). A new finline OMT was fabricated with two improved designs, to adapt it to the data transmission characteristics of the 120-GHz-band wireless link. One improvement is higher isolation between orthogonal ports and the other is lower group delay variation. The measured isolation is more than 59dB at the carrier frequency of the 120-GHz-band wireless link, and the measured group delay variation is 43ps. Using the finline OMT, we developed 10-Gbit/s bidirectional and 20-Gbit/s unidirectional wireless equipment that can transmit two channels of 10-Gbit/s data using polarization multiplexing. With this wireless equipment, we succeeded in 10-Gbit/s bidirectional and 20-Gbit/s unidirectional wireless data transmission, which leads to successful seamless connection to 10 Gigabit Ethernet and 12-ch high definition television signal transmission.

  • A Finline Orthomode Transducer for 120-GHz-Band Wireless Links

    Jun TAKEUCHI  Akihiko HIRATA  Hiroyuki TAKAHASHI  Naoya KUKUTSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    111-119

    A compact 120-GHz-band finline orthomode transducer (OMT) with high isolation between orthogonal ports (Iop) was designed and fabricated for bidirectional wireless data transmission with polarization multiplexing. To achieve high Iop, finline OMTs normally use a resistive card to decrease unwanted resonance, that occurs on the finline, but adding a resistive card complicates the fabrication process and raises the cost of fabrication. Our proposed finline OMT uses an improved finline design in which the resonance frequency is controlled in order to expel unwanted resonance from the operation bandwidth of the 120-GHz-band wireless link. The proposed finline design enables high Iop without using a resistive card, which simplifies the fabrication process and lowers the cost of fabrication. A square horn antenna, which is attached to the finline OMT, is also designed to suppress unwanted polarization rotation of reflected waves, which further improves Iop. The proposed finline OMT has a transmission loss of less than 1.2dB, return loss of more than 12dB, cross polarization discrimination of more than 30dB, and Iop of more than 50dB across the entire occupied bandwidth of the 120-GHz-band wireless link. These characteristics are sufficient not only for 10-Gbit/s bidirectional data transmission but also for 20-Gbit/s unidirectional 2-ch data transmission by polarization-multiplexing.

  • Matrix Pencil Method for Bistatic MIMO Radar with Single Snapshot

    Xianpeng WANG  Wei WANG  Dingjie XU  Junxiang WANG  

     
    BRIEF PAPER-Electromagnetic Theory

      Page(s):
    120-122

    The conventional covariance matrix technique based subspace methods, such as the 2-D Capon algorithm and computationally efficient ESPRIT-type algorithms, are invalid with a single snapshot in a bistatic MIMO radar. A novel matrix pencil method is proposed for the direction of departures (DODs) and direction of arrivals estimation (DOAs) estimation. The proposed method constructs an enhanced matrix from the direct sampled data, and then utilizes the matrix pencil approach to estimate DOAs and DODs, which are paired automatically. The proposed method is able to provide favorable and unambiguous angle estimation performance with a single snapshot. Simulation results are presented to verify the effectiveness of the proposed method.

  • Accurate Permittivity Estimation Method for 3-Dimensional Dielectric Object with FDTD-Based Waveform Correction

    Ryunosuke SOUMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Page(s):
    123-127

    Ultra-wideband pulse radar exhibits high range resolution, and excellent capability in penetrating dielectric media. With that, it has great potential as an innovative non-destructive inspection technique for objects such as human body or concrete walls. For suitability in such applications, we have already proposed an accurate permittivity estimation method for a 2-dimensional dielectric object of arbitrarily shape and clear boundary. In this method, the propagation path estimation inside the dielectric object is calculated, based on the geometrical optics (GO) approximation, where the dielectric boundary points and its normal vectors are directly reproduced by the range point migration (RPM) method. In addition, to compensate for the estimation error incurred using the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated, where an initial guess of the relative permittivity and dielectric boundary are employed for data regeneration. This study introduces the 3-dimensional extension of the above permittivity estimation method, aimed at practical uses, where only the transmissive data are effectively extracted, based on quantitative criteria that considers the spatial relationship between antenna locations and the dielectric object position. Results from a numerical simulation verify that our proposed method accomplishes accurate permittivity estimations even for 3-dimensional dielectric medium of wavelength size.