Yun WU ZiHao CHEN MengYao LI Han HAI
Intelligent reflecting surface (IRS) is an effective technology to improve the energy and spectral efficiency of wireless powered communication network (WPCN). Under user cooperation, we propose an IRS-assisted WPCN system where the wireless devices (WDs) collect wireless energy in the downlink (DL) and then share data. The adjacent single-antenna WDs cooperate to form a virtual antenna array so that their information can be simultaneously transmitted to the multi-antenna common hybrid access point (HAP) through the uplink (UL) using multiple-input multiple-output (MIMO) technology. By jointly optimizing the passive beamforming at the IRS, the active beamforming in the DL and the UL, the energy consumed by data sharing, and the time allocation of each phase, we formulate an UL throughput maximization problem. However, this optimization problem is non-convex since the optimization variables are highly coupled. In this study, we apply the alternating optimization (AO) technology to decouple the optimization variables and propose an efficient algorithm to avoid the difficulty of directly solving the problem. Numerical results indicate that the joint optimization method significantly improves the UL throughput performance in multi-user WPCN compared with various baseline methods.
Sota MORIYAMA Koichi ICHIGE Yuichi HORI Masayuki TACHI
In this paper, we propose a method for video reflection removal using a video restoration framework with enhanced deformable networks (EDVR). We examine the effect of each module in EDVR on video reflection removal and modify the models using 3D convolutions. The performance of each modified model is evaluated in terms of the RMSE between the structural similarity (SSIM) and the smoothed SSIM representing temporal consistency.
Taisei URAKAMI Tamami MARUYAMA Shimpei NISHIYAMA Manato KUSAMIZU Akira ONO Takahiro SHIOZAWA
The novel patch element shapes with the interdigital and multi-via structures for mushroom-type metasurface reflectors are proposed for controlling the reflection phases. The interdigital structure provides a wide reflection phase range by changing the depth of the interdigital fingers. In addition, the multi-via structure provides the higher positive reflection phases such as near +180°. The sufficient reflection phase range of 360° and the low polarization dependent properties could be confirmed by the electromagnetic field simulation. The metasurface reflector for the normal incident plane wave was designed. The desired reflection angles and sharp far field patterns of the reflected beams could be confirmed in the simulation results. The prototype reflectors for the experiments should be designed in the same way as the primary reflector design of the reflector antenna. Specifically, the reflector design method based on the ray tracing method using the incident wave phase was proposed for the prototype. The experimental radiation pattern for the reflector antenna composed of the transmitting antenna (TX) and the prototype metasurface reflector was similar to the simulated radiation pattern. The effectiveness of the proposed structures and their design methods could be confirmed by these simulation and experiment results.
Tu NGUYEN VAN Satoshi YAGITANI Kensuke SHIMIZU Shinjiro NISHI Mitsunori OZAKI Tomohiko IMACHI
A metasurface absorber capable of monitoring two-dimensional (2-d) electric field distributions has been developed, where a matrix of lumped resistors between surface patches formed on a mushroom-type structure works as a 2-d array of short dipole sensors. In this paper absorption and reflection of a spherical wave incident on the metasurface absorber are analyzed by numerical computation by the plane-wave spectrum (PWS) technique using 2-d Fourier analysis. The electromagnetic field of the spherical wave incident on the absorber surface is expanded into a large number of plane waves, for each of which the TE and TM reflection and absorption coefficients are applied. Then by synthesizing all the plane wave fields we obtain the spatial distributions of reflected and absorbed fields. The detailed formulation of the computation is described, and the computed field distributions are compared with those obtained by simulation and actual measurement when the spherical wave from a dipole is illuminated onto a metasurface absorber. It is demonstrated that the PWS technique is effective and efficient in obtaining the accurate field distributions of the spherical wave on and around the absorber. This is useful for evaluating the performance of the metasurface absorber to absorb and measure the spherical wave field distributions around an EM source.
This contribution introduces a novel, dielectric waveguide based, permittivity sensor. Next to the fundamental hybrid mode theory, which predicts exceptional wave propagation behavior, a design concept is presented that realizes a pseudo-transmission measurement approach for attenuating feed-side reflections. Furthermore, a transmission line length independent signal processing is introduced, which fosters the robustness and applicability of the sensor concept. Simulation and measurement results that prove the sensor concept and validate the high measurement accuracy, are presented and discussed in detail.
Yasutaka OGAWA Shuto TADOKORO Satoshi SUYAMA Masashi IWABUCHI Toshihiko NISHIMURA Takanori SATO Junichiro HAGIWARA Takeo OHGANE
Technology for sixth-generation (6G) mobile communication system is now being widely studied. A sub-Terahertz band is expected to play a great role in 6G to enable extremely high data-rate transmission. This paper has two goals. (1) Introduction of 6G concept and propagation characteristics of sub-Terahertz-band radio waves. (2) Performance evaluation of intelligent reflecting surfaces (IRSs) based on beamforming in a sub-Terahertz band for smart radio environments (SREs). We briefly review research on SREs with reconfigurable intelligent surfaces (RISs), and describe requirements and key features of 6G with a sub-Terahertz band. After that, we explain propagation characteristics of sub-Terahertz band radio waves. Important feature is that the number of multipath components is small in a sub-Terahertz band in indoor office environments. This leads to an IRS control method based on beamforming because the number of radio waves out of the optimum beam is very small and power that is not used for transmission from the IRS to user equipment (UE) is little in the environments. We use beams generated by a Butler matrix or a DFT matrix. In simulations, we compare the received power at a UE with that of the upper bound value. Simulation results show that the proposed method reveals good performance in the sense that the received power is not so lower than the upper bound value.
Soma YASUI Fujio OHISHI Hiroaki USUI
Thin films of Teflon AF 1600 were prepared by an electron-assisted (e-assist) deposition method. IR analysis revealed that the e-assist deposition generates small amount of polar groups such as carboxylic acid in the molecular structure of the deposited films. The polar groups contributed to increase intermolecular interaction and led to remarkable improvement in the adhesion strength and robustness of the films especially when a bias voltage was applied to the substrate in the course of e-assist deposition. The vapor-deposited Teflon AF films had refractive indices of 1.35 to 1.38, and were effective for antireflection coatings. The use of e-assist deposition slightly increased the refractive index as a trade-off for the improvement of film robustness.
Weisong LIAO Akira KAINO Tomoaki MASHIKO Sou KUROMASA Masatoshi SAKAI Kazuhiro KUDO
We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.
Meng ZHAO Junfeng WU Hong YU Haiqing LI Jingwen XU Siqi CHENG Lishuai GU Juan MENG
Accurate fish detection is of great significance in aquaculture. However, the non-uniform strong reflection in aquaculture ponds will affect the precision of fish detection. This paper combines YOLOv4 and CVAE to accurately detect fishes in the image with non-uniform strong reflection, in which the reflection in the image is removed at first and then the reflection-removed image is provided for fish detecting. Firstly, the improved YOLOv4 is applied to detect and mask the strong reflective region, to locate and label the reflective region for the subsequent reflection removal. Then, CVAE is combined with the improved YOLOv4 for inferring the priori distribution of the Reflection region and restoring the Reflection region by the distribution so that the reflection can be removed. For further improving the quality of the reflection-removed images, the adversarial learning is appended to CVAE. Finally, YOLOV4 is used to detect fishes in the high quality image. In addition, a new image dataset of pond cultured takifugu rubripes is constructed,, which includes 1000 images with fishes annotated manually, also a synthetic dataset including 2000 images with strong reflection is created and merged with the generated dataset for training and verifying the robustness of the proposed method. Comprehensive experiments are performed to compare the proposed method with the state-of-the-art fish detecting methods without reflection removal on the generated dataset. The results show that the fish detecting precision and recall of the proposed method are improved by 2.7% and 2.4% respectively.
Hiroshi HASHIGUCHI Takumi NISHIME Naobumi MICHISHITA Hisashi MORISHITA Hiromi MATSUNO Takuya OHTO Masayuki NAKANO
This paper presents dual bands and dual polarization reflectarrays for 5G millimeter wave applications. The frequency bands of 28GHz and 39GHz are allocated for 5G to realize high speed data transmission. However, these high frequency bands create coverage holes in which no link between base station and receivers is possible. Reflectarray has gained attention for reducing the size and number of coverage holes. This paper proposes a unit cell with swastika and the patch structure to construct the dual bands reflectrray operating at 28GHz and 39GHz by supercell. This paper also presents the detailed design procedure of the dual-bands reflectarray by supercell. The reflectarray is experimentally validated by a bistatic radar cross section measurement system. The experimental results are compared with simulation and reflection angle agreement is observed.
Haiyan SUN Xingyu WANG Zheng ZHU Jicong ZHAO
In this paper, the spurious modes and quality-factor (Q) values of the one-port dual-mode AlN lamb-wave resonators at 500-1000 MHz were studied by theoretical analysis and experimental verification. Through finite element analysis, we found that optimizing the width of the lateral reflection boundary at both ends of the resonator to reach the quarter wavelength (λ/4), which can improve its spectral purity and shift its resonant frequency. The designed resonators were micro-fabricated by using lithography processes on a 6-inch wafer. The measured results show that the spurious mode can be converted and dissipated, splitting into several longitudinal modes by optimizing the width of the lateral reflection boundary, which are consistent well with the theoretical analysis. Similarly, optimizing the interdigital transducer (IDT) width and number of IDT fingers can also suppress the resonator's spurious modes. In addition, it is found that there is no significant difference in the Qs value for the two modes of the dual-mode resonator with the narrow anchor and full anchor. The acoustic wave leaked from the anchor into the substrate produces a small displacement, and the energy is limited in the resonator. Compared to the resonator with Au IDTs, the resonator with Al IDTs can achieve a higher Q value due to its lower thermo-elastic damping loss. The measured results show the optimized dual-mode lamb-wave resonator can obtain Qs value of 2946.3 and 2881.4 at 730.6 MHz and 859.5 MHz, Qp values of 632.5 and 1407.6, effective electromechanical coupling coefficient (k2eff) of 0.73% and 0.11% respectively, and has excellent spectral purity simultaneously.
Makoto OMODANI Hiroyuki YAGUCHI Fusako KUSUNOKI
We have proposed and developed e-Tile for wall decoration and ornaments for interior/exterior. A prototype of 2m×2m large energy-saving reflective panel was realized by arraying 400 e-Tiles on a flat plane. Prototypes of cubic displays were also realized by constructing e-Tiles to cubic shape. Artistic display effects and 3D impression could be found in these cubic prototypes. We hope e-Tile is a promising solution to extend the application field of e-Paper to decorative use including architectural applications.
Xi FU Yun WANG Xiaolin WANG Xiaofan GU Xueting LUO Zheng LI Jian PANG Atsushi SHIRANE Kenichi OKADA
This paper presents a high-resolution and low-insertion-loss CMOS hybrid phase shifter with a nonuniform matching technique for satellite communication (SATCOM). The proposed hybrid phase shifter includes three 45° coarse phase-shifting stages and one 45° fine phase-tuning stage. The coarse stages are realized by bridged-T switch-type phase shifters (STPS) with 45° phase steps. The fine-tuning stage is based on a reflective-type phase shifter (RTPS) with two identical LC load tanks for phase tuning. A 0.8° phase resolution is realized by this work to support fine beam steering for the SATCOM. To further reduce the chain insertion loss, a nonuniform matching technique is utilized at the coarse stages. For the coarse and fine stages, the measured RMS gain errors at 29GHz are 0.7dB and 0.3dB, respectively. The measured RMS phase errors are 0.8° and 0.4°, respectively. The proposed hybrid phase shifter maintains return losses of all phase states less than -12dB from 24GHz to 34GHz. The presented hybrid phase shifter is fabricated in a standard 65-nm CMOS technology with a 0.14mm2 active area.
Lu ZHANG Chengqun WANG Mengyuan FANG Weiqiang XU
To solve the problem of metamerism in the color reproduction process, various spectral reflectance reconstruction methods combined with neural network have been proposed in recent years. However, these methods are generally sensitive to initial values and can easily converge to local optimal solutions, especially on small data sets. In this paper, we propose a spectral reflectance reconstruction algorithm based on the Back Propagation Neural Network (BPNN) and an improved Sparrow Search Algorithm (SSA). In this algorithm, to solve the problem that BPNN is sensitive to initial values, we propose to use SSA to initialize BPNN, and we use the sine chaotic mapping to further improve the stability of the algorithm. In the experiment, we tested the proposed algorithm on the X-Rite ColorChecker Classic Mini Chart which contains 24 colors, the results show that the proposed algorithm has significantly better performance compared to other algorithms and moreover it can meet the needs of spectral reflectance reconstruction on small data sets. Code is avaible at https://github.com/LuraZhang/spectral-reflectance-reconsctuction.
Yuki SUNAGUCHI Takashi TOMURA Jiro HIROKAWA
This paper details the design of a plate that controls the beam direction in an aperture array excited by a waveguide 2-plane hybrid coupler. The beam direction can be controlled in the range of ±15-32deg. in the quasi H-plane, and ±26-54deg. in the quasi E-plane at the design frequency of 66.425GHz. Inductive irises are introduced into tapered waveguides in the plate and the reflection is suppressed by narrow apertures. A plate that has a larger tilt angle in the quasi E-plane and another plate with conventional rectangular waveguide ports as a reference are fabricated and measured. The measured values agree well with the simulation results.
Wen SHI Jianling LIU Jingyu ZHANG Yuran MEN Hongwei CHEN Deke WANG Yang CAO
Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.
The energy efficiency of intelligent reflecting surface (IRS) enabled internet of things (IoT) networks is studied in this letter. The energy efficiency is mathematically expressed, respectively, as the number of reflecting elements and the spectral efficiency of the network and is shown to scale in the logarithm of the reflecting elements number in the high regime of transmit power from source node. Furthermore, it is revealed that the energy efficiency scales linearly over the spectral efficiency in the high regime of transmit power, in contrast to conventional studies on energy and spectral efficiency trade-offs in the non-IRS wireless IoT networks. Numerical simulations are carried out to verify the derived results for the IRS enabled IoT networks.
Osamu KAGAYA Keisuke ARAI Takato WATANABE Takuji ARIMA Toru UNO
In this paper, the influence of surface waves on the characteristics of on-glass antennas is clarified to enable appropriates design of C-band automotive on-glass antennas. Composite glasses are used in automotive windshields. These automotive composite glasses are composed of three layers. First, the surface wave properties of composite glass are investigated. Next, the effects of surface waves on the reflection coefficient characteristics of on-glass antennas are investigated. Finally, the antenna placement to reduce surface wave effect will be presented. Electromagnetic field analysis of a dipole antenna placed at the center of a 300mm × 300mm square flat composite glass showed that the electric field strength in the glass had ripples with the half wavelength period of the surface waves. Therefore, it was confirmed that standing waves are generated because of these surface waves. In addition, it is confirmed that ripples occur in the reflection coefficient at frequencies. Glass size is divisible by each of those guide wavelengths. Furthermore, it was clarified that the reflection coefficient fluctuates with respect to the distance between the antenna and a metal frame, which is attached to the end face in the direction perpendicular to the thickness of the glass because of the influence of standing waves caused by the surface waves; additionally, the reflection coefficient gets worse when the distance between the antenna and the metal frame is an integral multiple of one half wavelength. A similar tendency was observed in an electric field analysis using a model that was shaped like the actual windshield shape. Because radiation patterns also change as a result of the influence of surface waves and metal frames, the results imply that it is necessary to consider the actual device size and the metal frames when designing automotive on-glass antennas.
Chao WANG Michihiko OKUYAMA Ryo MATSUOKA Takahiro OKABE
Water detection is important for machine vision applications such as visual inspection and robot motion planning. In this paper, we propose an approach to per-pixel water detection on unknown surfaces with a hyperspectral image. Our proposed method is based on the water spectral characteristics: water is transparent for visible light but translucent/opaque for near-infrared light and therefore the apparent near-infrared spectral reflectance of a surface is smaller than the original one when water is present on it. Specifically, we use a linear combination of a small number of basis vector to approximate the spectral reflectance and estimate the original near-infrared reflectance from the visible reflectance (which does not depend on the presence or absence of water) to detect water. We conducted a number of experiments using real images and show that our method, which estimates near-infrared spectral reflectance based on the visible spectral reflectance, has better performance than existing techniques.
Aryo PINANDITO Yusuke HAYASHI Tsukasa HIRASHIMA
Concept map has been widely used as an interactive media to deliver contents in learning. Incorporating concept maps into collaborative learning could promote more interactive and meaningful learning environments. Furthermore, delivering concept maps in a digital form, such as in Kit-Build concept map, could improve learning interaction further. Collaborative learning with Kit-Build concept map has been shown to have positive effects on students' understanding. The way students compose their concept maps while discussing with others is presumed to affect their learning. However, supporting collaborative learning in an online setting is formidable to keep the interaction meaningful and fluid. This study proposed a new approach of real-time collaborative learning with Kit-Build concept map. This study also investigated how concept map recomposition with Kit-Build concept map could help students collaboratively learn EFL reading comprehension from a distance by comparing it with the traditional open-ended concept mapping approach. The learning effect and students' conversation during collaboration with the proposed online Kit-Build concept map system were investigated. Comparative analysis with a traditional collaborative concept mapping approach is also presented. The results suggested that collaborative learning with Kit-Build concept map yielded better outcomes and more meaningful discussion than the traditional open-end concept mapping.