The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IP(4754hit)

4221-4240hit(4754hit)

  • A High Performance Multiplier and Its Application to an FlR Filter Dedicated to Digital Video Transmission

    Keisuke OKADA  Shun MORIKAWA  Sumitaka TAKEUCHI  Isao SHIRAKAWA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    2106-2111

    A digital filter is one of the fundamental elements in the digital video transmission, and a multiplier acts as the key factor that determines the operation speed and silicon area of the filter. In terms of the digital video transmission, the required performance of a multiplier is to operate at the speed of 20-100 MHz but with the precision of 8-10 bits. In the case of implementing such an FIR filter with more than a certain number of taps, the same number of multipliers are necessary to realize the speed. Moreover, even though the coefficients to the filter are desired to be programmable, it is possible to change coefficients in the vertical fly-back interval of television receivers. This allows the preloadability of coefficients to the filter such that each coefficient can be treated as a constant during the filtering operation. Motivated by these requirements and functionalities, a novel multiplier and FIR filter architecture is described, which is to be synthesized with the use of a high level synthesis tool of COMPASS Design Navigator, partly with the aid of the manual design by means of a 0.8µm CMOS library.

  • Synchronization Method Using Several Synchronizing Chips for M-ary/SS Communication System

    Kouji OHUCHI  Hiromasa HABUCHI  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    1988-1993

    In this paper, a simple frame synchronization system for M-ary/SS communication systems is proposed, and synchronization performance and the resulting bit error rate performance are analyzed. The frame synchronization system uses racing counters and framing chips which are added to spreading sequences. M-ary/SS communication systems can improve bit error rate performance under the condition in which there is an additive white gaussian noise. Synchronization of M-ary/SS communication systems is difficult, however, because M-ary/SS communication systems have several spreading sequences. The authors proposed the simple frame synchronization system which uses only one chip in the spreading sequence as a framing signal. This system needs a long time for initial acquisition as the frame length is longer. The proposed system in this paper can make initial acquisition time short by increasing the number of framing chips. The proposed system corresponds to the conventional system when the number of framing chips is l. As the result, it is shown that several framing chips contribute to decrease the initial acquisition time. Moreover, the frame synchronization system can be applied to asynchronous M-ary/SSMA system when different framing chip pattern is assigned to each user.

  • Automatic Synthesis of a Serial Input Multiprocessor Array

    Dongji LI  Hiroaki KUNIEDA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    2097-2105

    Memory Sharing Processor Array (MSPA) architecture has been developed as an effective array processing architecture for both reduced data storages and increased processor cell utilization efficiency [1]. In this paper, the MSPA design methodology is extended to the VLSI synthesis of a serial input processor array (Pa). Then, a new bit-serial input multiplier and a new data serial input matrix multiplier are derived from the new PA. These multipliers are superior to the conventional multipliers by their smaller number of logic-gate count.

  • CDMA Myths and Realities Revisited

    Paul Walter BAIER  Peter JUNG  

     
    INVITED PAPER

      Vol:
    E79-A No:12
      Page(s):
    1930-1937

    The pros and cons of CDMA as a multiple access scheme for third generation cellular mobile radio systems are considered. Main criteria are spectral efficiency and capacity, but also flexibility and costs.

  • Analysis of Cycle Slip in Clock Recovery on Frequency-Selective Nakagami-Rice Fading Channels Based on the Equivalent Transmission-Path Model

    Yoshio KARASAWA  Tomonori KURODA  Hisato IWAI  

     
    PAPER-Radio Communication

      Vol:
    E79-B No:12
      Page(s):
    1900-1910

    A very simple but general scheme has been developed to calculate burst error occurrences due to cycle slip in clock recovery on frequency-selective Nakagami-Rice fading channels. The scheme, which we call the "Equivalent Transmission-Path Model," plays a role in connecting "wave propagation" with "digital transmission characteristics" in a general manner. First computer simulations assuming various types of delay profiles identify the "key parameters in Nakagami-Rice fading" that principally dominate the occurrence of cycle slips. Following this a simple method is developed to calculate the occurrence frequency of cycle slips utilizing the nature of the key parameters. Then, the accuracy of the scheme is confirmed through comparison between calculated values and simulation results. Finally, based on the scheme, calculated results on cycleslip occurrences are presented in line-of-sight fading environments.

  • Design Methodology of Deep Submicron CMOS Devices for 1 V Operation

    Hisato OYAMATSU  Masaaki KINUGAWA  Masakazu KAKUMU  

     
    PAPER

      Vol:
    E79-C No:12
      Page(s):
    1720-1725

    A design methodology of high performance deep submicron CMOS in very low voltage operation has been proposed from low power dissipation point of view. In low voltage operation, threshold voltage is restricted by performance, stability of CMOS circuits and power dissipation caused by standby and switching transient current. As a result, threshold voltage is established to be 0.15 V even at 1 V operation from these requirements. Moreover, according to this design, 0.15 µm CMOS was fabricated with reduction of parasitic effects. It achieved propagation delay time 50 psec at 1 V operation. This results confirms that this design methodology is promising to achieve high performance deep submicron CMOS devices for low power dissipation.

  • A Virtual Cache Architecture for Retaining the Process Working Sets in a Multiprogramming Environment

    Dongwook KIM  Joonwon LEE  

     
    PAPER-Computer Hardware and Design

      Vol:
    E79-D No:12
      Page(s):
    1637-1645

    A direct-mapped cache takes less time for accessing data than a set-associative cache because the time needed for selecting a cache line among the set is not necessary. The hit ratio of a direct-mapped cache, however, is lower due to the conflict misses caused by mapping multiple addresses to the same cache line. Addressing cache memory by virtual addresses reduces the cache access time by eliminating the time needed for address translation. The synonym problem in virtual cache necessitates an additional field in the cache tag to denote the process to which cache line belongs. In this paper, we propose a new virtual cache architecture whose average access time is almost the same as the direct-mapped caches while the hit ratio is the same as the set-associative cashes. A victim for cache replacement is selected from those that belong to a process which is most remote from being scheduled. The entire cache memory is divided into n banks, and each process is assigned to a bank. Then, each process runs on the assigned bank, and the cache behaves like a direct-mapped cache. Trace-driven simulations confirm that the new scheme removes almost as many conflict misses as does the set-associative cache, while cache access time is similar to a direct-mapped cache.

  • An Advanced BSG Self-Aligned (A-BSA) Transistor Technology for High Speed IC Implementation

    Tsutomu TASHIRO  Mitsuhiro SUGIYAMA  Hisashi TAKEMURA  Chihiro OGAWA  Masakazu KURISU  Hideki KITAHATA  Takenori MORIKAWA  Masahiko NAKAMAE  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E79-C No:12
      Page(s):
    1733-1740

    This paper reports on a high-speed silicon bipolar transistor with an fT and fMAX of over 40 GHz, we call it the Advanced Boro-silicated-glass Self-Aligned (A-BSA) transistor. In basic BSA technology, a CVD-BSG film is used not only as a diffusion source to form the intrinsic base and the link base regions but also as a sidewall spacer between the emitter and the base polysilicon electrodes. An A-BSA transistor offers three advancements to this technology: (1) a graded collector profile underneath the intrinsic base region to suppress the Kirk effect; (2) an optimized design of the link base region to prevent the frade-off effect between fT and base resistance; and (3) a newly developed buried emitter electrode structure, consisting of an N++-polysilicon layer, a platinum silicide layer, and a CVD tungsten plug, to prevent the emitter plug effect. Furthermore, our transistor uses a BPSG filled trench isolation to reduce parasitic capacitance and improve circuit performance. In this paper, we describe device design, process technology and characterization of the A-BSA transistor, with it we have performed several application ICs, operating at 10Gb/s and above. The A-BSA transistor achieved an fT of 41 GHz and an fMAX of 44 GHz under optimized conditions.

  • A 250 mV Bit-Line Swing Scheme for 1-V Operating Gigabit Scale DRAMs

    Tsuneo INABA  Daisaburo TAKASHIMA  Yukihito OOWAKI  Tohru OZAKI  Shigeyoshi WATANABE  Takashi OHSAWA  Kazunori OHUCHI  Hiroyuki TANGO  

     
    PAPER

      Vol:
    E79-C No:12
      Page(s):
    1699-1706

    This paper proposes a small 1/4Vcc bit-line swing scheme and a related sense amplifier scheme for low power 1 V operating DRAM. Using the proposed small bit-line swing scheme, the stress bias of memory cell transistor and capacitor is reduced to half that of the conventional DRAM, resulting in improvement of device reliability. The proposed sense amplifier scheme achieves high speed and stable sensing/restoring operation at 250mV bit-line swing, which is much smaller than threshold voltage. The proposed scheme reduces the total power dissipation of bit-line sensing/restoring operation to 40% of the conventional one. This paper also proposes a small 4F2 size memory cell and a new twisted bit-line scheme. The array noise is reduced to 8.6% of the conventional DRAM.

  • A 1.2-V Feedforward Amplifier and A/D Converter for Mixed Analog/Digital LSIs

    Tatsuji MATSUURA  Eiki IMAIZUMI  Takanobu ANBO  

     
    PAPER

      Vol:
    E79-C No:12
      Page(s):
    1666-1678

    Very-low-voltage 1.2-V mixed-signal CMOS technology is a device/circuit solution aimed at ultra-low-power portable systems such as digital cellular terminals and PDAs. We have developed an experimental 1.2-V mixed analog and digital LSI circuit/device technology. This technology is based on a new transistor structure that has a 0.3-µm gate length and a low Vth of 0.4 V, and that suppresses the short-channel effect. In this paper, we will mainly discuss low-voltage analog circuit design that uses this technology. We show that low Vth is essential not only to digital circuits, but also to 1.2-V analog amplifier, A/D converter and analog switch designs. To achieve high-conversion rate A/D converters, a pipeline architecture is used for low-voltage operation. To increase the attainable gain-bandwidth of the operational amplifier of the converter, a feedforward phase-compensated three-stage amplifier is proposed. The addition of a feedforward capacitor allows a high frequency signal to pass directly to the second stage, which optimizes use of the second stage bandwidth. Pole-zero canceling is used to achieve a fast settling of the amplifier. Although gain precision is degraded by the positive feedback through the feedforward capacitor, this can be offset by increasing the equivalent second-stage gain with an inner feedforward compensated amplifier. The gain-bandwidth of the proposed double feedforward amplifier is two to three times wider than with the conventional Miller compensation. With these techniques, we used 1.2-V mixed-signal CMOS technology to create a basic logic gate with a 400-ps delay and 0.4-µW/MHz power, and a 9-bit 2-Msample/s pipeline A/D converter with power dissipation of only 4 mW.

  • Multiuser Detection Useng a Hopfield Network for Asynchronous Code-Division Multiple-Access Systems

    Teruyuki MIYAJIMA  Takaaki HASEGAWA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    1963-1971

    In this paper, a multiuser receiver using a Hopfield network (Hopfield network receiver) for asynchronous codedivision multiple-access systems is proposed. We derive a novel likelihood function for the optimum demodulation of a data subsequence whose length is far shorter than that of the entire transmitted data sequence. It is shown that a novel Hopfield network receiver can be derived by exploiting the likelihood function, and the derived receiver leads to a low complexity receiver. The structure of the proposed receiver consists of a bank of correlators and a Hopfield network where the number of units is proportional to both the number of users and the length of a data sequence demodulated at a time. Computer simulation results are presented to compare the performance of the proposed receiver with those of the conventional multiuser detectors. It is shown that the proposed receiver significantly outperforms the correlation receiver, decorrelating detector and multistage detector, and provides suboptimum performnace.

  • Low Power Design Technology for Digital LSIs

    Tadayoshi ENOMOTO  

     
    INVITED PAPER

      Vol:
    E79-C No:12
      Page(s):
    1639-1649

    Discussed here is reduction of power dissipation for multi-media LSIs. First, both active power dissipation Pat and stand-by power dissipation Pst for both CMOS LSIs and GaAs LSIs are summarized. Then, general technologies for reducing Pat are discussed. Also reviewed are a wide variety of approaches (i.e., parallel and pipeline schemes, Chen's fast DCT algorithms, hierarchical search scheme for motion vectors, etc.) for reduction of Pat. The last part of the paper focuses on reduction of Pst. Reducing both Pat and Pst requires that both throughput and active chip areas be either maintained or improved.

  • A Nonlinear Blind Adaptive Receiver for DS/CDMA Systems

    Teruyuki MIYAJIMA  Kazuo YAMANAKA  

     
    LETTER

      Vol:
    E79-A No:12
      Page(s):
    2081-2084

    In this letter, we propose a blind adaptive receiver with nonlinear structure for DS/CDMA communication systems. The proposed receiver requires the signature waveform and timing for only the desired user. It is shown that the blind adaptation is equivalent to the adaptation with the training signal and the function to be minimized has no local minima.

  • Parallel Parsing on a Loosely Coupled Multiprocessor

    Dong-Yul RA  Jong-Hyun KIM  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E79-D No:12
      Page(s):
    1620-1628

    In this paper, we introduce a parallel algorithm for parsing context-free languages. Our algorithm can handle arbitrary context-free grammars since it is based on Earley's algorithm. Our algorithm can operate on any loosely coupled multiprocessor which can provide a topology of a one-way ring. Our algorithm uses p processors to parse an input string of length n where 1 p n. It is shown that our algorithm requires O(n3/p) time. The algorithm uses a simple job allocation strategy. However, it achieves high load balancing and uses the processors efficiently.

  • Combining Multiple Classifiers in a Hybrid System for High Performance Chinese Syllable Recognition

    Liang ZHOU  Satoshi IMAI  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E79-D No:11
      Page(s):
    1570-1578

    A multiple classifier system can be a powerful solution for robust pattern recognition. It is expected that the appropriate combination of multiple classifiers may reduce errors, provide robustness, and achieve higher performance. In this paper, high performance Chinese syllable recognition is presented using combinations of multiple classifiers. Chinese syllable recognition is divided into base syllable recognition (disregarding the tones) and recognition of 4 tones. For base syllable recognition, we used a combination of two multisegment vector quantization (MSVQ) classifiers based on different features (instantaneous and transitional features of speech). For tone recognition, vector quantization (VQ) classifier was first used, and was comparable to multilayer perceptron (MLP) classifier. To get robust or better performance, a combination of distortion-based classifier (VQ) and discriminant-based classifier (MLP) is proposed. The evaluations have been carried out using standard syllable database CRDB in China, and experimental results have shown that combination of multiple classifiers with different features or different methodologies can improve recognition performance. Recognition accuracy for base syllable, tone, and tonal syllable is 96.79%, 99.82% and 96.24% respectively. Since these results were evaluated on a standard database, they can be used as a benchmark that allows direct comparison against other approaches.

  • Current-Voltage Characteristics of Triple-Barrier Resonant Tunneling Diodes Including Coherent and Incoherent Tunneling Processes

    Riichiro TAKEMURA  Michihiko SUHARA  Yasuyuki MIYAMOTO  Kazuhito FURUYA  Yuji NAKAMURA  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1525-1529

    Current-voltage characteristics of triple-barrier resonant tunneling diodes are theoretically analyzed taking phase breaking into account. The peak current in predicted using conventional theories is much smaller, typically by a factor of 1/3000 for a coherent length of 100 nm, than that measured because the incoherent tunneling process is neglected. We take both the coherent and the incoherent tunneling processes into account in the analysis and show that the product of the peak current and the voltage width at half maximum of the peak current is almost constant even when the phase coherent length varies between 50 and 1000 nm. The peak current density increases by two orders of magnitude in the model developed here.

  • A Necessary and Sufficient Condition for Kleenean Functions

    Noboru TAKAGI  Kyoichi NAKASHIMA  Masao MUKAIDONO  

     
    PAPER-Computer Hardware and Design

      Vol:
    E79-D No:11
      Page(s):
    1511-1517

    The paper deals with Kleenean functions defined as fuzzy logic functions with constants. Kleenean functions provide a means of handling conditions of indeterminate truth value (ambiguous states) which ordinary classical logic (binary logic) cannot cope with. This paper clarifies a necessary and sufficient condition for a function to be a Kleenean function. The condition is provided with a set of two conditions, and it will be shown that they are independent of each other.

  • Finding a Minimal Siphon Containing Specified Places in a General Petri Net

    Masahiro YAMAUCHI  Shinji TANIMOTO  Toshimasa WATANABE  

     
    LETTER

      Vol:
    E79-A No:11
      Page(s):
    1825-1828

    A minimal siphon (or alternatively a structural deadlock) of a Petri net is defined as a minimal set S of places such that existence of any edge from a transition t to a place of S implies that there is an edge from some place of S to t. The subject of the paper is to find a minimal siphon containing a given set of specified places of a general Petri net.

  • Radiation Fields of a Printed-Dipole on a Semi-Infinite Substrate

    Tomotaka WADA  Masanobu KOMINAMI  Hiroji KUSAKA  

     
    LETTER

      Vol:
    E79-A No:11
      Page(s):
    1860-1861

    The printed dipole on a semi-infinite substrate is investigated. The solution is based on the moment method in the Fourier transform domain. We analyze far-field and near-field radiation patterns for a printed dipole. Therefore, we make radiation fields clear.

  • Finding Minimal Siphons in General Petri Nets

    Shinji TANIMOTO  Masahiro YAMAUCHI  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E79-A No:11
      Page(s):
    1817-1824

    A siphon (or alternatively a structutal deadlock) of a Petri net is defined as a set S of places such that existence of any edge from a transition t to a place of S implies that there is an edge from some place of S to t. A minimal siphon is a siphon such that any proper subset is not a siphon. The results of the paper are as follows. (1) The problem of deciding whether or not a given Petri net has a minimum siphon (i.e., a minimum-cardinality minimal siphon) is NP-complete. (2) A polynomial-time algorithm to find, if any, a minimal siphon or even a maximal calss of mutually disjoint minimal siphons of a general Petri net is proposed.

4221-4240hit(4754hit)