The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

8321-8340hit(21534hit)

  • A Low-Complexity Sparse Channel Estimation Method for OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2211-2214

    In this letter, we propose a low-complexity sparse channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The proposed method uses a discrete Fourier transform (DFT)-based technique for channel estimation and a novel sorted noise space discrimination technique to estimate the channel length and tap positions. Simulation results demonstrate that the reduction in signal space improves the channel estimation performance.

  • Throughput Comparison of Hybrid Slotted CSMA/CA-TDMA and Slotted CSMA/CA in IEEE 802.15.3c WPAN

    Chang-Woo PYO  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:8
      Page(s):
    1531-1543

    In this study, we construct an analytical model to investigate the system throughput of 802.15.3c WPAN by examining hybrid slotted CSMA/CA-TDMA and slotted CSMA/CA multiple access methods. Our analysis clearly shows the differences between the system throughputs of both multiple access methods. The obtained results show that the hybrid slotted CSMA/CA-TDMA can achieve a considerably higher system throughput compared to the slotted CSMA/CA; the difference between the two access methods is especially pronounced as the increase in the number of devices contending for the network increase. The system throughput comparisons have established why the hybrid slotted CSMA/CA-TDMA is preferred over the slotted CSMA/CA for high-speed wireless communications of the 802.15.3c WPAN.

  • A 24-GS/s 6-bit R-2R Current-Steering DAC in InP HBT Technology

    Munehiko NAGATANI  Hideyuki NOSAKA  Shogo YAMANAKA  Kimikazu SANO  Koichi MURATA  

     
    PAPER-III-V High-Speed Devices and Circuits

      Vol:
    E93-C No:8
      Page(s):
    1279-1285

    This paper describes the circuit design and measured performance of a high-speed digital-to-analog converter (DAC) for the next generation of coherent optical communications systems. To achieve high-speed and low-power operation, we used an R-2R current-steering architecture and devised timing alignment and waveform improvement techniques. A 6-bit DAC test chip was fabricated with InP HBT technology, which yields a peak ft of 175 GHz and a peak fmax of 260 GHz. The measured differential and integral non-linearity (DNL and INL) are within +0.61/-0.07 LSB and +0.27/-0.52 LSB, respectively. The measured spurious-free dynamic range (SFDR) is 44.7 dB for a sinusoidal output of 72.5 MHz at a sampling rate of 13.5 GS/s, which was the limit of our measurement setup. The expected ramp-wave outputs at a sampling rate of 24 GS/s are also obtained. The total power consumption is as low as 0.88 W with a supply voltage of -4.0 V. This DAC can provide low-power operation and a higher sampling rate than any other previously reported DAC with a resolution of 5 bits or more.

  • Multiple-Valued Constant-Power Adder and Its Application to Cryptographic Processor

    Naofumi HOMMA  Yuichi BABA  Atsushi MIYAMOTO  Takafumi AOKI  

     
    PAPER-Application of Multiple-Valued VLSI

      Vol:
    E93-D No:8
      Page(s):
    2117-2125

    This paper proposes a constant-power adder based on multiple-valued logic and its application to cryptographic processors being resistant to side-channel attacks. The proposed adder is implemented in Multiple-Valued Current-Mode Logic (MV-CML). The important feature of MV-CML is that the power consumption can be constant regardless of input values, which makes it possible to prevent power-analysis attacks using dependencies between power consumption and intermediate values or operations of the executed cryptographic algorithms. In this paper, we focus on a multiple-valued Binary Carry-Save adder based on the Positive-Digit (PD) number system and its application to RSA processors. The power characteristic of the proposed design is evaluated with HSPICE simulation using 90 nm process technology. The result shows that the proposed design can achieve constant power consumption with lower performance overhead in comparison with the conventional binary design.

  • A Class of Complementary Sequences with Multi-Width Zero Cross-Correlation Zone

    Zhenyu ZHANG  Fanxin ZENG  Guixin XUAN  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:8
      Page(s):
    1508-1517

    A novel construction of complementary sequences with multi-width zero cross-correlation zone (ZCCZ) is presented based on the interleaving iteration of a basic kernel set. The presented multi-width ZCCZ complementary (MWZC) sequences can be divided into multiple sequence groups, the correlation functions of which possess one-width intragroup ZCCZ and multi-width intergroup ZCCZ. When an arbitrary orthogonal sequence set with set size equal to sequence length is used as a basic kernel set, the constructed MWZC sequence set and the combination sets of specific subsets with each subset including several groups can be optimal with respect to the theoretical bound on set size. In addition, the MWZC sequence set includes complementary sequence sets with one-width or two-width ZCCZ as special subsets, and allows a more flexible choice of sequence parameters.

  • InP-Based Unipolar Heterostructure Diode for Vertical Integration, Level Shifting, and Small Signal Rectification

    Werner PROST  Dudu ZHANG  Benjamin MUNSTERMANN  Tobias FELDENGUT  Ralf GEITMANN  Artur POLOCZEK  Franz-Josef TEGUDE  

     
    PAPER-III-V Heterostructure Devices

      Vol:
    E93-C No:8
      Page(s):
    1309-1314

    A unipolar n-n heterostrucuture diode is developed in the InP material system. The electronic barrier is formed by a saw tooth type of conduction band bending which consists of a quaternary In0.52(AlyGa1-y)0.48As layer with 0 < y < ymax. This barrier is lattice matched for all y to InP and is embedded between two n+-InGaAs layers. By varying the maximum Al-content from ymax,1 = 0.7 to ymax,2 = 1 a variable barrier height is formed which enables a diode-type I-V characteristic by epitaxial design with an adjustable current density within 3 orders of magnitude. The high current density of the diode with the lower barrier height (ymax,1 = 0.7) makes it suitable for high frequency applications at low signal levels. RF measurements reveal a speed index of 52 ps/V at VD = 0.15 V. The device is investigated for RF-to-DC power conversion in UHF RFID transponders with low-amplitude RF signals.

  • Robust Reduced Order Observer for Discrete-Time Lipschitz Nonlinear Systems

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:8
      Page(s):
    1560-1564

    The robust reduced order observer for a class of discrete-time Lipschitz nonlinear systems with external disturbance is proposed. It is shown that the proposed observer design can suppress the effect on the estimation error of external disturbance up to the prescribed level. Also, linear matrix inequalities are used to represent sufficient conditions on the existence of the proposed observer. Moreover, the maximum admissible Lipschitz constant of the proposed design is obtained for a given disturbance attenuation level. Finally, an illustrative example is given to verify the effectiveness of the proposed design.

  • Antenna Calibration Using the 3-Antenna Method with the In-Phase Synthetic Method

    Katsumi FUJII  Yukio YAMANAKA  Kunimasa KOIKE  Akira SUGIURA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E93-B No:8
      Page(s):
    2158-2164

    The use of the in-phase synthetic method is proposed for antenna calibration using the three-antenna method (TAM) in order to make the TAM applicable even in a semi-anechoic chamber (SAC) or on an open-area test site. Suitable antenna arrangements are theoretically investigated for this improved calibration method. Experimental analyses demonstrate that the in-phase synthetic method can remarkably reduce unwanted effects of the ground-reflected wave. Therefore, even on a metal ground plane, the proposed TAM with the in-phase synthetic method can yield an accurate actual gain of a double ridged guide antenna at frequencies from 4 GHz to 14 GHz with differences of +0.16/-0.37 dB from the results of the conventional TAM performed in an fully anechoic room (FAR).

  • Interscale Stein's Unbiased Risk Estimate and Intrascale Feature Patches Distance Constraint for Image Denoising

    Qieshi ZHANG  Sei-ichiro KAMATA  Alireza AHRARY  

     
    PAPER-Image

      Vol:
    E93-A No:8
      Page(s):
    1434-1441

    The influence of noise is an important problem on image acquisition and transmission stages. The traditional image denoising approaches only analyzing the pixels of local region with a moving window, which calculated by neighbor pixels to denoise. Recently, this research has been focused on the transform domain and feature space. Compare with the traditional approaches, the global multi-scale analyzing and unchangeable noise distribution is the advantage. Apparently, the estimation based methods can be used in transform domain and get better effect. This paper proposed a new approach to image denoising in orthonormal wavelet domain. In this paper, we adopt Stein's unbiased risk estimate (SURE) based method to denoise the low-frequency bands and the feature patches distance constraint (FPDC) method also be proposed to estimate the noise free bands in Wavelet domain. The key point is that how to divide the lower frequency sub-bands and the higher frequency sub-bands, and do interscale SURE and intrascale FPDC, respectively. We compared our denoising method with some well-known and new denoising algorithms, the experimental results show that the proposed method can give better performance and keep more detail information in most objective and subjective criteria than other methods.

  • Theoretical and Heuristic Synthesis of Digital Spiking Neurons for Spike-Pattern-Division Multiplexing

    Tetsuro IGUCHI  Akira HIRATA  Hiroyuki TORIKAI  

     
    PAPER-Nonlinear Problems

      Vol:
    E93-A No:8
      Page(s):
    1486-1496

    A digital spiking neuron is a wired system of shift registers that can generate spike-trains having various spike patterns by adjusting the wiring pattern between the registers. Inspired by the ultra-wideband impulse radio, a novel theoretical synthesis method of the neuron for application to spike-pattern division multiplex communications in an artificial pulse-coupled neural network is presented. Also, a novel heuristic learning algorithm of the neuron for realization of better communication performances is presented. In addition, fundamental comparisons to existing impulse radio sequence design methods are given.

  • Orientation Estimation for Sensor Motion Tracking Using Interacting Multiple Model Filter

    Chin-Der WANN  Jian-Hau GAO  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:8
      Page(s):
    1565-1568

    In this letter, we present a real-time orientation estimation and motion tracking scheme using interacting multiple model (IMM) based Kalman filtering method. Two nonlinear filters, quaternion-based extended Kalman filter (QBEKF) and gyroscope-based extended Kalman filter (GBEKF) are utilized in the proposed IMM-based orientation estimator for sensor motion state estimation. In the QBEKF, measurements from gyroscope, accelerometer and magnetometer are processed; while in the GBEKF, sole measurements from gyroscope are processed. The interacting multiple model algorithm is used for fusing the estimated states via adaptive model weighting. Simulation results validate the proposed design concept, and the scheme is capable of reducing overall estimation errors in sensor motion tracking.

  • M-Channel Paraunitary Filter Banks Based on Direct Lifting Structure of Building Block and Its Inverse Transform for Lossless-to-Lossy Image Coding

    Taizo SUZUKI  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1457-1464

    This paper presents a paraunitary filter bank (PUFB) based on a direct lifting structure of a building block and its inverse transform for lossless-to-lossy image coding. Although the conventional lifting-based filter banks (LBFBs), which are constructed by lifting structures with integer coefficients and rounding operations, suffer from degradation of coding performance due to much rounding error generated by cascading lifting structures, our proposals can be applied to any PUFB without losing many ones because building blocks can be applied to every lifting block as it is. It is constructed with very simple structures and many rounding operations are eliminated. Additionally, the number of rounding operations is reduced more by using two-dimensional block transform (2DBT) of separated transform to each building block. As result, even though the proposed PUFBs require a little side information block (SIB), they show better coding performance in lossless-to-lossy image coding than the conventional ones.

  • Multiple-Valued Data Transmission Based on Time-Domain Pre-Emphasis Techniques

    Yasushi YUMINAKA  Yasunori TAKAHASHI  Kenichi HENMI  

     
    PAPER-Multiple-Valued VLSI Technology

      Vol:
    E93-D No:8
      Page(s):
    2109-2116

    This paper presents a Pulse-Width Modulation (PWM) pre-emphasis technique which utilizes time-domain information processing to increase the data rate for a given bandwidth of interconnection. The PWM pre-emphasis method does not change the pulse amplitude as for conventional FIR pre-emphasis, but instead exploits timing resolution. This fits well with recent CMOS technology trends toward higher switching speeds and lower supply voltage. We discuss multiple-valued data transmission based on time-domain pre-emphasis techniques in consideration of higher-order channel effects. Also, a new data-dependent adaptive time-domain pre-emphasis technique is proposed to compensate for the data-dependent jitter.

  • An Optimum Design of Error Diffusion Filters Using the Blue Noise in All Graylevels

    Junghyeun HWANG  Hisakazu KIKUCHI  Shogo MURAMATSU  Jaeho SHIN  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1465-1475

    The error diffusion filter in this paper is optimized with respect to the ideal blue noise pattern corresponding to a single tone level. The filter coefficients are optimized by the minimization of the squared error norm between the Fourier power spectra of the resulting halftone and the blue noise pattern. During the process of optimization, the binary pattern power spectrum matching algorithm is applied with the aid of a new blue noise model. The number of the optimum filters is equal to that of different tones. The visual fidelity of the bilevel halftones generated by the error diffusion filters is evaluated in terms of a weighted signal-to-noise ratio, Fourier power spectra, and others. Experimental results have demonstrated that the proposed filter set generates satisfactory bilevel halftones of grayscale images.

  • Magnetic Saturation Due to Fast Dynamic Response and Its Eliminating Method in Bridge-Type DC-DC Converter

    Teruhiko KOHAMA  Sunao TOKIMATSU  Akio INOUE  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E93-B No:8
      Page(s):
    2165-2170

    Method for eliminating magnetic saturation in low-voltage and high-current DC-DC converter with fast dynamic response is described. The magnetic saturation is observed in onboard isolated bridge-type DC-DC converter due to inherently asymmetrical PWM signal during transient condition. The saturation is not eliminated by using ac-coupling capacitor for transformer. Mechanism of the saturation is analyzed and confirmed by experiments. Based on the analysis a solution for the magnetic saturation is proposed. The effectiveness of proposed method is also confirmed by experiments.

  • A Design Method for Variable Linear-Phase FIR Filters with Changing Multifactors for Checkweighers

    Toma MIYATA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1400-1407

    Digital signal processing requires digital filters with variable frequency characteristics. A variable digital filter (VDF) is a filter whose frequency characteristics can be easily and instantaneously changed. In this paper, we present a design method for variable linear-phase finite impulse response (FIR) filters with multiple variable factors and a reduction method for the number of polynomial coefficients. The obtained filter has a high piecewise attenuation in the stopband. The stopband edge and the position and magnitude of the high piecewise stopband attenuation can be varied by changing some parameters. Variable parameters are normalized in this paper. An optimization methodology known as semidefinite programming (SDP) is used to design the filter. In addition, we present that the proposed VDF can be implemented using the Farrow structure, which suitable for real time signal processing. The usefulness of the proposed filter is demonstrated through examples.

  • A Study on Compact Wide Bandpass Filter Using Inter-Digital Resonator

    Jumpei YAMAMOTO  Takenori YASUZUMI  Tomoki UWANO  Osamu HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:7
      Page(s):
    1132-1134

    A new type of the wide-band BPF made up of an inter-digital resonator and parallel-coupled lines was proposed. The bandwidth of the inter-digital resonator becomes wider by increasing the number of fingers. The design of the parallel-coupled line was performed by optimazing the structural parameters so that the bandwidth is the same as that of the inter-digital resonator. The measured results of the combination of above elements for the BPF agreed well with the simulated ones such that the insertion loss is less than 0.67 dB and that the sharp skirt characteristics are realized by attenuation poles near the edges of the passband.

  • Simulation Modeling of SAM Fuzzy Logic Controllers

    Hae Young LEE  Seung-Min PARK  Tae Ho CHO  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E93-D No:7
      Page(s):
    1984-1986

    This paper presents an approach to implementing simulation models for SAM fuzzy controllers without the use of external components. The approach represents a fuzzy controller as a composition of simple simulation models which involve only basic operations.

  • A Differential MIMO SC-FDE Transceiver Design over Multipath Fast Fading Channels

    Juinn-Horng DENG  Jeng-Kuang HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1939-1942

    In this paper, we propose a new differential MIMO single-carrier system with frequency-domain equalization (SC-FDE) aided by the insertion of cyclic prefix. This block transmission system not only inherits all the merits of the SISO SC-FDE system, but is also equipped with a differential space-time block coding (DSTBC) such as to combat the fast-changing frequency selective fading channels without the needs to estimate and then compensate the channel effects. Hence, for practical applications, it has the additional merits of decoding simplicity and robustness against high mobility transmission environments. Computer simulations show that the proposed system can provide diversity benefit as the non-differential system does, while greatly reducing the receiver complexity.

  • A Study and Design of LPF Using Hairpin Structural Circuit and Chip Capacitor

    Shohei HASEGAWA  Takenori YASUZUMI  Tomoki UWANO  Osamu HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:7
      Page(s):
    1135-1137

    In this paper, a microstrip lowpass filter using hairpin structure and Chip-Capacitor is proposed. Firstly, the LPF with one hairpin element is briefly designed and optimized with LC prototype structure using circuit simulator. With the capacitor loaded the proposed LPF illustrates the sharp attenuation performance near the cut-off frequency and the wideband rejection characteristics. Then, in order to improve the stopband attenuation the three-hairpin LPF is studied. By optimazing its design the attenuation is improved by 32 dB.

8321-8340hit(21534hit)