The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] gate delay(13hit)

1-13hit
  • A Study of Phase-Adjusting Architectures for Low-Phase-Noise Quadrature Voltage-Controlled Oscillators Open Access

    Mamoru UGAJIN  Yuya KAKEI  Nobuyuki ITOH  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/08/03
      Vol:
    E106-C No:2
      Page(s):
    59-66

    Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.

  • An Effective Model of the Overshooting Effect for Multiple-Input Gates in Nanometer Technologies

    Li DING  Zhangcai HUANG  Atsushi KUROKAWA  Jing WANG  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:5
      Page(s):
    1059-1074

    With the scaling of CMOS technology into the nanometer regime, the overshooting effect is more and more obvious and has a significant influence to gate delay and power consumption. Recently, researchers have already proposed the overshooting effect models for an inverter. However, the accurate overshooting effect model for multiple-input gates is seldom presented and the existing technology to reduce a multiple-input gate to an inverter is not useful when modeling the overshooting effect for multiple-input gates. Therefore, modeling the overshooting effect for multiple-input gates is proposed in this paper. Firstly, a formula-based model is presented for the overshooting time of 2-input NOR gate. Then, more complicated methods are given to calculate the overshooting time of 3-input NOR gate and other multiple-input gates. The proposed model is verified to have a good agreement, within 3.4% error margin, compared with SPICE simulation results using CMOS 32nm PTM model.

  • A Non-Iterative Method for Calculating the Effective Capacitance of CMOS Gates with Interconnect Load Effect

    Minglu JIANG  Zhangcai HUANG  Atsushi KUROKAWA  Qiang LI  Bin LIN  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:5
      Page(s):
    1201-1209

    Gate delay evaluation is always a vital concern for high-performance digital VLSI designs. As the feature size of VLSIs decreases to the nano-meter region, the work to obtain an accurate gate delay value becomes more difficult and time consuming than ever. The conventional methods usually use iterative algorithms to ensure the accuracy of the effective capacitance Ceff, which is usually used to compute the gate delay with interconnect loads and to capture the output signal shape of the real gate response. Accordingly, the efficiency is sacrificed. In this paper, an accurate and efficient approach is proposed for gate delay estimation. With the linear relationship of gate output time points and Ceff, a polynomial approximation is used to make the nonlinear effective capacitance equation be solved without iterative method. Compared to the conventional methods, the proposed method improves the efficiency of gate delay calculation. Meanwhile, experimental results show that the proposed method is in good agreement with SPICE results and the average error is 2.8%.

  • Gate Delay Estimation in STA under Dynamic Power Supply Noise

    Takaaki OKUMURA  Fumihiro MINAMI  Kenji SHIMAZAKI  Kimihiko KUWADA  Masanori HASHIMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E93-A No:12
      Page(s):
    2447-2455

    This paper presents a gate delay estimation method that takes into account dynamic power supply noise. We review STA based on static IR-drop analysis and a conventional method for dynamic noise waveform, and reveal their limitations and problems that originate from circuit structures and higher delay sensitivity to voltage in advanced technologies. We then propose a gate delay computation that overcomes the problems with iterative computations and consideration of input voltage drop. Evaluation results with various circuits and noise injection timings show that the proposed method estimates path delay fluctuation well within 1% error on average.

  • An Approach for Reducing Leakage Current Variation due to Manufacturing Variability

    Tsuyoshi SAKATA  Takaaki OKUMURA  Atsushi KUROKAWA  Hidenari NAKASHIMA  Hiroo MASUDA  Takashi SATO  Masanori HASHIMOTO  Koutaro HACHIYA  Katsuhiro FURUKAWA  Masakazu TANAKA  Hiroshi TAKAFUJI  Toshiki KANAMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3016-3023

    Leakage current is an important qualitative metric of LSI (Large Scale Integrated circuit). In this paper, we focus on reduction of leakage current variation under the process variation. Firstly, we derive a set of quadratic equations to evaluate delay and leakage current under the process variation. Using these equations, we discuss the cases of varying leakage current without degrading delay distribution and propose a procedure to reduce the leakage current variations. From the experiments, we show the proposed method effectively reduces the leakage current variation up to 50% at 90 percentile point of the distribution compared with the conventional design approach.

  • Accurate Method for Calculating the Effective Capacitance with RC Loads Based on the Thevenin Model

    Minglu JIANG  Zhangcai HUANG  Atsushi KUROKAWA  Shuai FANG  Yasuaki INOUE  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:10
      Page(s):
    2531-2539

    In deep submicron designs, predicting gate delays with interconnect load is a noteworthy work for Static Timing Analysis (STA). The effective capacitance Ceff concept and the Thevenin model that replaces the gate with a linear resistor and a voltage source are usually used to calculate the delay of gate with interconnect load. In conventional methods, it is not considered that the charges transferred into interconnect load and Ceff in the Thevenin model are not equal. The charge difference between interconnect load and Ceff has the large influence to the accuracy of computing Ceff. In this paper, an advanced effective capacitance model is proposed to consider the above problem in the Thevenin model, where the influence of the charge difference is modeled as one part of the effective capacitance to compute the gate delay. Experimental results show a significant improvement in accuracy when the charge difference between interconnect load and Ceff is considered.

  • Improvement in Computational Accuracy of Output Transition Time Variation Considering Threshold Voltage Variations

    Takaaki OKUMURA  Atsushi KUROKAWA  Hiroo MASUDA  Toshiki KANAMOTO  Masanori HASHIMOTO  Hiroshi TAKAFUJI  Hidenari NAKASHIMA  Nobuto ONO  Tsuyoshi SAKATA  Takashi SATO  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    990-997

    Process variation is becoming a primal concern in timing closure of LSI (Large Scale Integrated Circuit) with the progress of process technology scaling. To overcome this problem, SSTA (Statistical Static Timing Analysis) has been intensively studied since it is expected to be one of the most efficient ways for performance estimation. In this paper, we study variation of output transition-time. We firstly clarify that the transition-time variation can not be expressed accurately by a conventional first-order sensitivity-based approach in the case that the input transition-time is slow and the output load is small. We secondly reveal quadratic dependence of the output transition-time to operating margin in voltage. We finally propose a procedure through which the estimation of output transition-time becomes continuously accurate in wide range of input transition-time and output load combinations.

  • Timing Analysis Considering Spatial Power/Ground Level Variation

    Masanori HASHIMOTO  Junji YAMAGUCHI  Hidetoshi ONODERA  

     
    PAPER-Physical Design

      Vol:
    E90-A No:12
      Page(s):
    2661-2668

    Spatial power/ground level variation causes power/ground level mismatch between driver and receiver, and the mismatch affects gate propagation delay. This paper proposes a timing analysis method based on a concept called "PG level equalization" which is compatible with conventional STA frameworks. We equalize the power/ground levels of driver and receiver. The charging/discharging current variation due to equalization is compensated by replacing output load. We present an implementation method of the proposed concept, and demonstrate that the proposed method works well for multiple-input gates and RC load model.

  • A Novel Model for Computing the Effective Capacitance of CMOS Gates with Interconnect Loads

    Zhangcai HUANG  Atsushi KUROKAWA  Yasuaki INOUE  Junfa MAO  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2562-2569

    In deep submicron designs, the interconnect wires play a major role in the timing behavior of logic gates. The effective capacitance Ceff concept is usually used to calculate the delay of gate with interconnect loads. In this paper, we present a new method of Integration Approximation to calculate Ceff. In this new method, the complicated nonlinear gate output is assumed as a piecewise linear (PWL) waveform. A new model is then derived to compute the value of Ceff. The introduction of Integration Approximation results in Ceff being insensitive to output waveform shape. Therefore, the new method can be applied to various output waveforms of CMOS gates with RC-π loads. Experimental results show a significant improvement in accuracy.

  • A Method of Generating Tests with Linearity Property for Gate Delay Faults in Combinational Circuits

    Hiroshi TAKAHASHI  Kwame Osei BOATENG  Yuzo TAKAMATSU  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E82-D No:11
      Page(s):
    1466-1473

    A. Chatterjee et al. proposed tests with linearity property for gate delay faults to determine, at a required clock speed, whether a circuit under test is a marginal chip or not. The latest transition time at the primary output is changed linearly with the size of the gate delay fault when the proposed test is applied to the circuit under test. To authors' knowledge, no reports on an algorithmic method for generating tests with linearity property have been presented before. In this paper, we propose a method for generating tests with linearity property for gate delay faults. The proposed method introduces a new extended timed calculus to calculate the size of a given gate delay fault that can be propagated to the primary output. The method has been applied to ISCAS benchmark circuits under the unit delay model.

  • Power Estimation and Reduction of CMOS Circuits Considering Gate Delay

    Hiroaki UEDA  Kozo KINOSHITA  

     
    PAPER-Computer Systems

      Vol:
    E82-D No:1
      Page(s):
    301-308

    In this paper, we propose a method, called PORT-D, for optimizing CMOS logic circuits to reduce the average power dissipation. PORT-D is an extensional method of PORT. While PORT reduces the average power dissipation under the zero delay model, PORT-D reduces the average power dissipation by taking into account of the gate delay. In PORT-D, the average power dissipation is estimated by the revised BDD traversal method. The revised BDD traversal method calculates switching activity of gate output by constructing OBDD's without representing switching condition of a gate output. PORT-D modifies the circuit in order to reduce the average power dissipation, where transformations which reduce the average power dissipation are found by using permissible functions. Experimental results for benchmark circuits show PORT-D reduces the average power dissipation more than the number of transistors. Furthermore, we modify PORT-D to have high power reduction capability. In the revised method, named PORT-MIX, a mixture strategy of PORT and PORT-D is implemented. Experimental results show PORT-MIX has higher power reduction capability and higher area optimization capability than PORT-D.

  • Analytical Formulas of Output Waveform and Short-Circuit Power Dissipation for Static CMOS Gates Driving a CRC π Load

    Akio HIRATA  Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER

      Vol:
    E81-A No:3
      Page(s):
    462-469

    As MOSFET sizes and wire widths become very small in recent years, influence of resistive component of interconnects on the estimation of propagation delay and power dissipation can no longer be neglected. In this paper we present formulas of output waveform at driving point and short-circuit power dissipation for static CMOS logic gates driving a CRC π load. By representing the short-circuit current and the current flowing in the resistance of a CRC π load by piece-wise linear functions, a closed-form formula is derived. On the gate delay the error of our formula is less than 8% from SPICE in our experiments. These formulas will contribute to faster estimation of circuit speed and power dissipation of VLSI chips on timing level simulators.

  • A CMOS Time-to-Digital Converter LSI with Half-Nanosecond Resolution Using a Ring Gate Delay Line

    Takamoto WATANABE  Yasuaki MAKINO  Yoshinori OHTSUKA  Shigeyuki AKITA  Tadashi HATTORI  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1774-1779

    The development of highly accurate and durable control system is becoming a must for todays high performance automobiles. For example, it is necessary to up-grade todays materials and methods creating more sensitive sensors, higher speed processors and more accurate actuators, while also being more durable. Thus, the development of a CMOS time-to-digital converter LSI with half-nanosecond resolution, which controls only pulse signals was achieved by employing 1.5 µm CMOS technology. The new signal detecting circuit, 1.1 mm2 in size, converts time to numerical values over a wide measurement range (13 bits). The compact digital circuit employs a newly developed "ring gate delay system". Within the LSI the fully digital circuit is highly durable. This allows it to be utilized even under severe conditions (for example an operating ambient temperature of 130). In order to measure time accurately, a method of correcting the variation of measurement time data employing a real-time conversion fully digital circuit is described. This method allows for fully automatic correction with a microcomputer, so no manual adjustment is required. In addition to sensor circuit applications, the LSI has great potential for Application Specific Integrated Circuit, (ASIC) such as a function cell with is a completely new method of measuring time.